39,901 research outputs found

    Non-equilibrium spatial distribution of Rashba spin torque in ferromagnetic metal layer

    Full text link
    We study the spatial distribution of spin torque induced by a strong Rashba spin-orbit coupling (RSOC) in a ferromagnetic (FM) metal layer, using the Keldysh non-equilibrium Green's function method. In the presence of the s-d interaction between the non-equilibrium conduction electrons and the local magnetic moments, the RSOC effect induces a torque on the moments, which we term as the Rashba spin torque. A correlation between the Rashba spin torque and the spatial spin current is presented in this work, clearly mapping the spatial distribution of Rashba Spin torque in a nano-sized ferromagnetic device. When local magnetism is turned on, the out-of-plane (Sz) Spin Hall effect (SHE) is disrupted, but rather unexpectedly an in-plane (Sy) SHE is detected. We also study the effect of Rashba strength (\alpha_R) and splitting exchange (\Delta) on the non-equilibrium Rashba spin torque averaged over the device. Rashba spin torque allows an efficient transfer of spin momentum such that a typical switching field of 20 mT can be attained with a low current density of less than 10^6 A/cm^2

    Calculation of a Class of Three-Loop Vacuum Diagrams with Two Different Mass Values

    Get PDF
    We calculate analytically a class of three-loop vacuum diagrams with two different mass values, one of which is one-third as large as the other, using the method of Chetyrkin, Misiak, and M\"{u}nz in the dimensional regularization scheme. All pole terms in \epsilon=4-D (D being the space-time dimensions in a dimensional regularization scheme) plus finite terms containing the logarithm of mass are kept in our calculation of each diagram. It is shown that three-loop effective potential calculated using three-loop integrals obtained in this paper agrees, in the large-N limit, with the overlap part of leading-order (in the large-N limit) calculation of Coleman, Jackiw, and Politzer [Phys. Rev. D {\bf 10}, 2491 (1974)].Comment: RevTex, 15 pages, 4 postscript figures, minor corrections in K(c), Appendix B removed, typos corrected, acknowledgements change

    Induced Lorentz- and CPT-violating Chern-Simons term in QED: Fock-Schwinger proper time method

    Get PDF
    Using the Fock-Schwinger proper time method, we calculate the induced Chern-Simons term arising from the Lorentz- and CPT-violating sector of quantum electrodynamics with a bμψˉγμγ5ψb_\mu \bar{\psi}\gamma^\mu \gamma_5 \psi term. Our result to all orders in bb coincides with a recent linear-in-bb calculation by Chaichian et al. [hep-th/0010129 v2]. The coincidence was pointed out by Chung [Phys. Lett. {\bf B461} (1999) 138] and P\'{e}rez-Victoria [Phys. Rev. Lett. {\bf 83} (1999) 2518] in the standard Feynman diagram calculation with the nonperturbative-in-bb propagator.Comment: 11 pages, no figur
    corecore