671 research outputs found

    Molecular orbital calculations of two-electron states for P donor solid-state spin qubits

    Get PDF
    We theoretically study the Hilbert space structure of two neighbouring P donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position and inter donor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, whilst the magnitude of the double occupancy probability can affect the error rate.Comment: 15 pages (2-column

    Anharmonic effects on a phonon number measurement of a quantum mesoscopic mechanical oscillator

    Get PDF
    We generalize a proposal for detecting single phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the readout oscillator.Comment: 13 pages, 2 figure

    Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams

    Get PDF
    Excitation-energy distributions have been derived from measurements of 5.0-14.6 GeV/c antiproton, proton and pion reactions with 197^{197}Au target nuclei, using the ISiS 4π\pi detector array. The maximum probability for producing high excitation-energy events is found for the antiproton beam relative to other hadrons, 3^3He and pˉ\bar{p} beams from LEAR. For protons and pions, the excitation-energy distributions are nearly independent of hadron type and beam momentum above about 8 GeV/c. The excitation energy enhancement for pˉ\bar{p} beams and the saturation effect are qualitatively consistent with intranuclear cascade code predictions. For all systems studied, maximum cluster sizes are observed for residues with E*/A \sim 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter B. also available at http://nuchem.iucf.indiana.edu

    Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation

    Get PDF
    Excitation-energy-gated two-fragment correlation functions have been studied between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in π\pi^- and p + 197^{197}Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c. Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of one order of magnitude in the fragment emission time in the excitation energy interval 2-5A MeV, followed by a nearly constant breakup time at higher excitation energy. The observed decrease in emission time is shown to be strongly correlated with the increase of the fragment emission probability, and the onset of thermally-induced radial expansion. This result is interpreted as evidence consistent with a transition from surface-dominated to bulk emission expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color

    Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy

    Get PDF
    A requirement for many quantum computation schemes is the ability to measure single spins. This paper examines one proposed scheme: magnetic resonance force microscopy, including the effects of thermal noise and back-action from monitoring. We derive a simplified equation using the adiabatic approximation, and produce a stochastic pure state unraveling which is useful for numerical simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical Review

    Genetic and phenotypic characterization of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract.

    Get PDF
    Indolent T-cell lymphoproliferative disorders of the gastrointestinal tract are rare clonal T-cell diseases that more commonly occur in the intestines and have a protracted clinical course. Different immunophenotypic subsets have been described, but the molecular pathogenesis and cell of origin of these lymphocytic proliferations is poorly understood. Hence, we performed targeted next-generation sequencing and comprehensive immunophenotypic analysis of ten indolent T-cell lymphoproliferative disorders of the gastrointestinal tract, which comprised CD4 <sup>+</sup> (n=4), CD8 <sup>+</sup> (n=4), CD4 <sup>+</sup> /CD8 <sup>+</sup> (n=1) and CD4 <sup>-</sup> /CD8 <sup>-</sup> (n=1) cases. Genetic alterations, including recurrent mutations and novel rearrangements, were identified in 8/10 (80%) of these lymphoproliferative disorders. The CD4 <sup>+</sup> , CD4 <sup>+</sup> /CD8 <sup>+</sup> , and CD4 <sup>-</sup> /CD8 <sup>-</sup> cases harbored frequent alterations of JAK-STAT pathway genes (5/6, 82%); STAT3 mutations (n=3), SOCS1 deletion (n=1) and STAT3-JAK2 rearrangement (n=1), and 4/6 (67%) had concomitant mutations in epigenetic modifier genes (TET2, DNMT3A, KMT2D). Conversely, 2/4 (50%) of the CD8 <sup>+</sup> cases exhibited structural alterations involving the 3' untranslated region of the IL2 gene. Longitudinal genetic analysis revealed stable mutational profiles in 4/5 (80%) cases and acquisition of mutations in one case was a harbinger of disease transformation. The CD4 <sup>+</sup> and CD4 <sup>+</sup> /CD8 <sup>+</sup> lymphoproliferative disorders displayed heterogeneous Th1 (T-bet <sup>+</sup> ), Th2 (GATA3 <sup>+</sup> ) or hybrid Th1/Th2 (T-bet <sup>+</sup> /GATA3 <sup>+</sup> ) profiles, while the majority of CD8 <sup>+</sup> disorders and the CD4 <sup>-</sup> /CD8 <sup>-</sup> disease showed a type-2 polarized (GATA3 <sup>+</sup> ) effector T-cell (Tc2) phenotype. Additionally, CD103 expression was noted in 2/4 CD8 <sup>+</sup> cases. Our findings provide insights into the pathogenetic bases of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and confirm the heterogeneous nature of these diseases. Detection of shared and distinct genetic alterations of the JAK-STAT pathway in certain immunophenotypic subsets warrants further mechanistic studies to determine whether therapeutic targeting of this signaling cascade is efficacious for a proportion of patients with these recalcitrant diseases

    Probing flavor changing interactions in hadron collisions

    Full text link
    The subprocess ggtcˉ+tˉcgg \to t\bar{c}+\bar{t}c in the two-Higgs-doublet model with flavor-changing scalar couplings is examined at the one loop level. With perturbative QCD factorization theorem, the corresponding cross sections for hadron-hadron collisions are computed numerically. The results are applicable to the whole mass range of the weakly coupled Higgs bosons. In case we could efficiently exclude the severe backgrounds of the tcˉ(tˉc)t\bar{c}(\bar{t}c) production signal, probing the flavor-changing top-charm-scalar vertex at hadron colliders would be very promising and accessible experimentally.Comment: LaTex file, 14 pages, 8 EPS figure

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy

    Full text link
    Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV has been studied with multidetector systems covering nearly 4-pi in solid angle. The correlations of both the intermediate mass fragment and light charged particle multiplicities with the transverse energy are explored. A comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The experimental trends are compared to statistical model predictions.Comment: 7 pages, submitted to Phys. Rev.
    corecore