671 research outputs found
Molecular orbital calculations of two-electron states for P donor solid-state spin qubits
We theoretically study the Hilbert space structure of two neighbouring P
donor electrons in silicon-based quantum computer architectures. To use
electron spins as qubits, a crucial condition is the isolation of the electron
spins from their environment, including the electronic orbital degrees of
freedom. We provide detailed electronic structure calculations of both the
single donor electron wave function and the two-electron pair wave function. We
adopted a molecular orbital method for the two-electron problem, forming a
basis with the calculated single donor electron orbitals. Our two-electron
basis contains many singlet and triplet orbital excited states, in addition to
the two simple ground state singlet and triplet orbitals usually used in the
Heitler-London approximation to describe the two-electron donor pair wave
function. We determined the excitation spectrum of the two-donor system, and
study its dependence on strain, lattice position and inter donor separation.
This allows us to determine how isolated the ground state singlet and triplet
orbitals are from the rest of the excited state Hilbert space. In addition to
calculating the energy spectrum, we are also able to evaluate the exchange
coupling between the two donor electrons, and the double occupancy probability
that both electrons will reside on the same P donor. These two quantities are
very important for logical operations in solid-state quantum computing devices,
as a large exchange coupling achieves faster gating times, whilst the magnitude
of the double occupancy probability can affect the error rate.Comment: 15 pages (2-column
Anharmonic effects on a phonon number measurement of a quantum mesoscopic mechanical oscillator
We generalize a proposal for detecting single phonon transitions in a single
nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of
each mechanical oscillator. In this scheme two NEMS oscillators are coupled via
a term quadratic in the amplitude of oscillation for each oscillator. One NEMS
oscillator is driven and strongly damped and becomes a transducer for phonon
number in the other measured oscillator. We derive the conditions for this
measurement scheme to be quantum limited and find a condition on the size of
the anharmonicity. We also derive the relation between the phase diffusion
back-action noise due to number measurement and the localization time for the
measured system to enter a phonon number eigenstate. We relate both these time
scales to the strength of the measured signal, which is an induced current
proportional to the position of the readout oscillator.Comment: 13 pages, 2 figure
Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams
Excitation-energy distributions have been derived from measurements of
5.0-14.6 GeV/c antiproton, proton and pion reactions with Au target
nuclei, using the ISiS 4 detector array. The maximum probability for
producing high excitation-energy events is found for the antiproton beam
relative to other hadrons, He and beams from LEAR. For protons
and pions, the excitation-energy distributions are nearly independent of hadron
type and beam momentum above about 8 GeV/c. The excitation energy enhancement
for beams and the saturation effect are qualitatively consistent with
intranuclear cascade code predictions. For all systems studied, maximum cluster
sizes are observed for residues with E*/A 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter
B. also available at http://nuchem.iucf.indiana.edu
Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation
Excitation-energy-gated two-fragment correlation functions have been studied
between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in
and p + Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c.
Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of
one order of magnitude in the fragment emission time in the excitation energy
interval 2-5A MeV, followed by a nearly constant breakup time at higher
excitation energy. The observed decrease in emission time is shown to be
strongly correlated with the increase of the fragment emission probability, and
the onset of thermally-induced radial expansion. This result is interpreted as
evidence consistent with a transition from surface-dominated to bulk emission
expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color
Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy
A requirement for many quantum computation schemes is the ability to measure
single spins. This paper examines one proposed scheme: magnetic resonance force
microscopy, including the effects of thermal noise and back-action from
monitoring. We derive a simplified equation using the adiabatic approximation,
and produce a stochastic pure state unraveling which is useful for numerical
simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical
Review
Genetic and phenotypic characterization of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract.
Indolent T-cell lymphoproliferative disorders of the gastrointestinal tract are rare clonal T-cell diseases that more commonly occur in the intestines and have a protracted clinical course. Different immunophenotypic subsets have been described, but the molecular pathogenesis and cell of origin of these lymphocytic proliferations is poorly understood. Hence, we performed targeted next-generation sequencing and comprehensive immunophenotypic analysis of ten indolent T-cell lymphoproliferative disorders of the gastrointestinal tract, which comprised CD4 <sup>+</sup> (n=4), CD8 <sup>+</sup> (n=4), CD4 <sup>+</sup> /CD8 <sup>+</sup> (n=1) and CD4 <sup>-</sup> /CD8 <sup>-</sup> (n=1) cases. Genetic alterations, including recurrent mutations and novel rearrangements, were identified in 8/10 (80%) of these lymphoproliferative disorders. The CD4 <sup>+</sup> , CD4 <sup>+</sup> /CD8 <sup>+</sup> , and CD4 <sup>-</sup> /CD8 <sup>-</sup> cases harbored frequent alterations of JAK-STAT pathway genes (5/6, 82%); STAT3 mutations (n=3), SOCS1 deletion (n=1) and STAT3-JAK2 rearrangement (n=1), and 4/6 (67%) had concomitant mutations in epigenetic modifier genes (TET2, DNMT3A, KMT2D). Conversely, 2/4 (50%) of the CD8 <sup>+</sup> cases exhibited structural alterations involving the 3' untranslated region of the IL2 gene. Longitudinal genetic analysis revealed stable mutational profiles in 4/5 (80%) cases and acquisition of mutations in one case was a harbinger of disease transformation. The CD4 <sup>+</sup> and CD4 <sup>+</sup> /CD8 <sup>+</sup> lymphoproliferative disorders displayed heterogeneous Th1 (T-bet <sup>+</sup> ), Th2 (GATA3 <sup>+</sup> ) or hybrid Th1/Th2 (T-bet <sup>+</sup> /GATA3 <sup>+</sup> ) profiles, while the majority of CD8 <sup>+</sup> disorders and the CD4 <sup>-</sup> /CD8 <sup>-</sup> disease showed a type-2 polarized (GATA3 <sup>+</sup> ) effector T-cell (Tc2) phenotype. Additionally, CD103 expression was noted in 2/4 CD8 <sup>+</sup> cases. Our findings provide insights into the pathogenetic bases of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and confirm the heterogeneous nature of these diseases. Detection of shared and distinct genetic alterations of the JAK-STAT pathway in certain immunophenotypic subsets warrants further mechanistic studies to determine whether therapeutic targeting of this signaling cascade is efficacious for a proportion of patients with these recalcitrant diseases
Probing flavor changing interactions in hadron collisions
The subprocess in the two-Higgs-doublet model with
flavor-changing scalar couplings is examined at the one loop level. With
perturbative QCD factorization theorem, the corresponding cross sections for
hadron-hadron collisions are computed numerically. The results are applicable
to the whole mass range of the weakly coupled Higgs bosons. In case we could
efficiently exclude the severe backgrounds of the
production signal, probing the flavor-changing top-charm-scalar vertex at
hadron colliders would be very promising and accessible experimentally.Comment: LaTex file, 14 pages, 8 EPS figure
Isospin Effects in Nuclear Multifragmentation
We develop an improved Statistical Multifragmentation Model that provides the
capability to calculate calorimetric and isotopic observables with precision.
With this new model we examine the influence of nuclear isospin on the fragment
elemental and isotopic distributions. We show that the proposed improvements on
the model are essential for studying isospin effects in nuclear
multifragmentation. In particular, these calculations show that accurate
comparisons to experimental data require that the nuclear masses, free energies
and secondary decay must be handled with higher precision than many current
models accord.Comment: 46 pages, 16 figure
A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy
Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV
has been studied with multidetector systems covering nearly 4-pi in solid
angle. The correlations of both the intermediate mass fragment and light
charged particle multiplicities with the transverse energy are explored. A
comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The
experimental trends are compared to statistical model predictions.Comment: 7 pages, submitted to Phys. Rev.
- …