272 research outputs found

    Scaling solutions in general non-minimal coupling theories

    Get PDF
    A class of generalized non-minimal coupling theories is investigated, in search of scaling attractors able to provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and when the coupling function and the potential verify a simple relation. In such cases, which include power law and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The constraint from the time variability of GG, however, limits the fraction of energy in the scalar field to less than 4% of the total energy density, and excludes accelerated solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.

    Attractor Solution of Phantom Field

    Full text link
    In light of recent study on the dark energy models that manifest an equation of state w<−1w<-1, we investigate the cosmological evolution of phantom field in a specific potential, exponential potential in this paper. The phase plane analysis show that the there is a late time attractor solution in this model, which address the similar issues as that of fine tuning problems in conventional quintessence models. The equation of state ww is determined by the attractor solution which is dependent on the λ\lambda parameter in the potential. We also show that this model is stable for our present observable universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is the final version to match the published versio

    Cosmological Tracking Solutions

    Get PDF
    A substantial fraction of the energy density of the universe may consist of quintessence in the form of a slowly-rolling scalar field. Since the energy density of the scalar field generally decreases more slowly than the matter energy density, it appears that the ratio of the two densities must be set to a special, infinitesimal value in the early universe in order to have the two densities nearly coincide today. Recently, we introduced the notion of tracker fields to avoid this initial conditions problem. In the paper, we address the following questions: What is the general condition to have tracker fields? What is the relation between the matter energy density and the equation-of-state of the universe imposed by tracker solutions? And, can tracker solutions explain why quintessence is becoming important today rather than during the early universe

    Cosmological models from quintessence

    Get PDF
    A generalized quintessence model is presented which corresponds to a richer vacuum structure that, besides a time-dependent, slowly varying scalar field, contains a varying cosmological term. From first principles we determine a number of scalar-field potentials that satisfy the constraints imposed by the field equations and conservations laws, both in the conventional and generalized quintessence models. Besides inverse-power law solutions, these potentials are given in terms of hyperbolic functions or the twelve Jacobian elliptic functions, and are all related to the luminosity distance by means of an integral equation. Integration of this equation for the different solutions leads to a large family of cosmological models characterized by luminosity distance-redshift relations. Out of such models, only four appear to be able to predict a required accelerating universe conforming to observations on supernova Ia, at large or moderate redshifts.Comment: 9 pages, RevTex, to appear in Phys. Rev.

    Reconstructing the Equation of State of Tachyon

    Full text link
    Recent progress in theoretical physics suggests that the dark energy in the universe might be resulted from the rolling tachyon field of string theory. Measurements to SNe Ia can be helpful to reconstruct the equation of state of the rolling tachyon which is a possible candidate of dark energy. We present a numerical analysis for the evolution of the equation of state of the rolling tachyon and derive the reconstruction equations for the equation of state as well as the potential.Comment: 6 pages, 3 figures, to appear Phys. Rev.

    Phenomenology of a realistic accelerating universe using only Planck-scale physics

    Get PDF
    Modern data is showing increasing evidence that the Universe is accelerating. So far, all attempts to account for the acceleration have required some fundamental dimensionless quantities to be extremely small. We show how a class of scalar field models (which may emerge naturally from superstring theory) can account for acceleration which starts in the present epoch with all the potential parameters O(1) in Planck units.Comment: 4 pages including 4 figures. Final version accepted for publication in PRL with expanded discussion of the relationship to other quintessence research. No changes to our own wor

    Born-Infeld-type phantom on the brane world

    Full text link
    We study the evolution of Born-Infeld-type phantom in the second Randall-Sundrum brane scenario, and find that there exists attractor solution for the potential with a maximum, which implies a cosmological constant at the late time. Especially, we discuss the BI model of constant potential without and with dust matter. In the weak tension limit of the brane, we obtain an exact solution for the BI phantom and scale factor and show that there is no big rip during the evolution of the brane.Comment: 5 pages, 2 figures, Reference added, Phys. Rev. D in pres

    Phantom Field with O(N) Symmetry in Exponential Potential

    Full text link
    In this paper, we study the phase space of phantom model with O(\emph{N}) symmetry in exponential potential. Different from the model without O(\emph{N}) symmetry, the introduction of the symmetry leads to a lower bound w>−3w>-3 on the equation of state for the existence of stable phantom dominated attractor phase. The reconstruction relation between the potential of O(\textit{N}) phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.

    Tunneling in Λ\Lambda Decaying Cosmologies and the Cosmological Constant Problem

    Full text link
    The tunneling rate, with exact prefactor, is calculated to first order in ℏ\hbar for an empty closed Friedmann-Robertson-Walker (FRW) universe with decaying cosmological term Λ∌R−m\Lambda \sim R^{-m} (RR is the scale factor and mm is a parameter 0≀m≀20\leq m \leq 2). This model is equivalent to a cosmology with the equation of state pχ=(m/3−1)ρχp_{\chi}=(m/3 -1)\rho_{\chi}. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that the highest tunneling rate occurs for m=2m=2 corresponding to the cosmic string matter universe. The obtained most probable cosmological term, like one obtained by Strominger, accounts for a possible solution to the cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including some physical mechanisms supporting the time variation of the cosmological constant, added references for the section 3. Accepted to be published in Phys. Rev.
    • 

    corecore