56,037 research outputs found
Critical Relaxation and Critical Exponents
Dynamic relaxation of the XY model and fully frustrated XY model quenched
from an initial ordered state to the critical temperature or below is
investigated with Monte Carlo methods. Universal power law scaling behaviour is
observed. The dynamic critical exponent and the static exponent are
extracted from the time-dependent Binder cumulant and magnetization. The
results are competitive to those measured with traditional methods
Critical domain-wall dynamics of model B
With Monte Carlo methods, we simulate the critical domain-wall dynamics of
model B, taking the two-dimensional Ising model as an example. In the
macroscopic short-time regime, a dynamic scaling form is revealed. Due to the
existence of the quasi-random walkers, the magnetization shows intrinsic
dependence on the lattice size . A new exponent which governs the
-dependence of the magnetization is measured to be .Comment: 10pages, 4 figure
Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model
We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase
transition for the spin-1/2 quantum XY model in two dimensions. The short-time
dynamic scaling behaviour is found and the dynamical exponent , and
the static exponent are determined at the transition temperature.Comment: 6 pages with 3 figure
Distributed coherent manipulation of qutrits by virtual excitation processes
We propose a scheme for the deterministic coherent manipulation of two atomic
qutrits, trapped in separate cavities coupled through a short optical fibre or
optical resonator. We study such a system in the regime of dispersive
atom-field interactions, where the dynamics of atoms, cavities and fibre
operates through virtual population of both the atomic excited states and
photonic states in the cavities and fibre. We show that the resulting effective
dynamics allows for the creation of robust qutrit entanglement, and thoroughly
investigate the influence of imperfections and dissipation, due to atomic
spontaneous emission and photon leakage, on the entanglement of the two qutrits
state.Comment: 15 pages, 4 figure
Vanishing Gamow-Teller Transition Rate for A=14 and the Nucleon-Nucleon Interaction in the Medium
The problem of the near vanishing of the Gamow-Teller transition () in
the A=14 system between the lowest and states is
revisited. The model space is extended from the valence space to the
valence space plus all 2 excitations. The question is addressed
as to what features of the effective nucleon-nucleon interaction in the medium
are required to obtain the vanishing strength in this extended space. It
turns out that a combination of a realistic strength of the tensor force
combined with a spin-orbit interaction which is enhanced as compared to the
free interaction yields a vanishing strength. Such an interaction can be
derived from a microscopic meson exchange potential if the enhancement of the
small component of the Dirac spinors for the nucleons is taken into account.Comment: RevTex file, 7 pages, four postscript figures. submitted to Phys.
Rev. C as a brief repor
- …