100,345 research outputs found

    The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars

    Get PDF
    Adpoting new s-process nucleosynthesis scenario and branch s-process path, we calculate the heavy-element abundances and C/O ratio of solar metallicity 3M_sun TP-AGB stars. The evolutionary sequence from M to S to C stars of AGB stars is explained naturally by the calculated results. Then combining the angular momentum conservation model of wind accretion with the heavy-element abundances on the surface of TP-AGB stars, we calculate the heavy-element overabundances of barium stars via successive pulsed accreting and mixing. Our results support that the barium stars with longer orbital period, P>1600 days, form through wind accretion scenario.Comment: 14 pages, LaTex, 17 PS figures included, accepted for publication in A &

    Far-infrared study of K giants in the solar neighborhood: Connection between Li enrichment and mass-loss

    Full text link
    We searched for a correlation between the two anomalous properties of K giants: Li enhancement and IR excess from an unbiased survey of a large sample of RGB stars. A sample of 2000 low-mass K giants with accurate astrometry from the Hipparcos catalog was chosen for which Li abundances have been determined from low-resolution spectra. Far-infrared data were collected from the WISEWISE and IRASIRAS catalogs. To probe the correlation between the two anomalies, we supplemented 15 Li-rich K giants discovered from this sample with 25 known Li-rich K giants from other studies. Dust shell evolutionary models and spectral energy distributions were constructed using the code DUSTY to estimate different dust shell properties, such as dust evolutionary time scales, dust temperatures, and mass-loss rates. Among 2000 K giants, we found about two dozen K giants with detectable far-IR excess, and surprisingly, none of them are Li-rich. Similarly, the 15 new Li-rich K giants that were identified from the same sample show no evidence of IR excess. Of the total 40 Li-rich K giants, only 7 show IR excess. Important is that K giants with Li enhancement and/or IR excess begin to appear only at the bump on the RGB. Results show that K giants with IR excess are very rare, similar to K giants with Li enhancement. This may be due to the rapid differential evolution of dust shell and Li depletion compared to RGB evolutionary time scales. We also infer from the results that during the bump evolution, giants probably undergo some internal changes, which are perhaps the cause of mass-loss and Li-enhancement events. However, the available observational results do not ascertain that these properties are correlated. That a few Li-rich giants have IR excess seems to be pure coincidence.Comment: Accepted for Publication in Astronomy & Astrophysics, 6 figures, 5 tables, 19 page

    Mapping the Dirac point in gated bilayer graphene

    Full text link
    We have performed low temperature scanning tunneling spectroscopy measurements on exfoliated bilayer graphene on SiO2. By varying the back gate voltage we observed a linear shift of the Dirac point and an opening of a band gap due to the perpendicular electric field. In addition to observing a shift in the Dirac point, we also measured its spatial dependence using spatially resolved scanning tunneling spectroscopy. The spatial variation of the Dirac point was not correlated with topographic features and therefore we attribute its shift to random charged impurities.Comment: 3 pages, 3 figure
    • …
    corecore