650 research outputs found

    In Defense of the Epistemic Imperative

    Get PDF
    Sample (2015) argues that scientists ought not to believe that their theories are true because they cannot fulfill the epistemic obligation to take the diachronic perspective on their theories. I reply that Sample’s argument imposes an inordinately heavy epistemic obligation on scientists, and that it spells doom not only for scientific theories but also for observational beliefs and philosophical ideas that Samples endorses. I also delineate what I take to be a reasonable epistemic obligation for scientists. In sum, philosophers ought to impose on scientists only an epistemic standard that they are willing to impose on themselves

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    Correlations, deviations and expectations: the Extended Principle of the Common Cause

    Get PDF
    The Principle of the Common Cause is usually understood to provide causal explanations for probabilistic correlations obtaining between causally unrelated events. In this study, an extended interpretation of the principle is proposed, according to which common causes should be invoked to explain positive correlations whose values depart from the ones that one would expect to obtain in accordance to her probabilistic expectations. In addition, a probabilistic model for common causes is tailored which satisfies the generalized version of the principle, at the same time including the standard conjunctive-fork model as a special case

    ACCURACY UNCOMPOSED: AGAINST CALIBRATIONISM

    Full text link

    Bayesian Conditioning, the Reflection Principle, and Quantum Decoherence

    Get PDF
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's probabilities to satisfy van Fraassen's [1984] reflection principle (which entails a related constraint pointed out by Goldstein [1983]). We then exhibit the specialized assumption needed to recover Bayesian conditioning from an analogous reflection-style consideration. Bringing the argument to the context of quantum measurement theory, we show that "quantum decoherence" can be understood in purely personalist terms---quantum decoherence (as supposed in a von Neumann chain) is not a physical process at all, but an application of the reflection principle. From this point of view, the decoherence theory of Zeh, Zurek, and others as a story of quantum measurement has the plot turned exactly backward.Comment: 14 pages, written in memory of Itamar Pitowsk

    On Empirical Equivalence and Duality

    Full text link
    I argue that, on a judicious reading of two existing criteria--one syntactic and the other semantic--dual theories can be taken to be empirically equivalent. The judicious reading is straightforward, but leads to the surprising conclusion that very different-looking theories can have equivalent empirical content. And thus it shows how a widespread scientific practice, of interpreting duals as empirically equivalent, can be understood by a thus-far unnoticed feature of existing accounts of empirical equivalence

    Keeping things in perspective

    Full text link

    On Empirical Equivalence and Duality

    Get PDF
    I argue that, on a judicious reading of two existing criteria--one syntactic and the other semantic--dual theories can be taken to be empirically equivalent. The judicious reading is straightforward, but leads to the surprising conclusion that very different-looking theories can have equivalent empirical content. And thus it shows how a widespread scientific practice, of interpreting duals as empirically equivalent, can be understood by a thus-far unnoticed feature of existing accounts of empirical equivalence

    Real World Interpretations of Quantum Theory

    Full text link
    I propose a new class of interpretations, {\it real world interpretations}, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They give a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected to tend towards orthogonality as different possible quasiclassical structures emerge or as measurement-like interactions produce different classical outcomes. However, as the worlds have a precise mathematical definition, real world interpretations need no definition of quasiclassicality, measurement, or other concepts whose imprecision is problematic in other interpretational approaches. It is natural to postulate that precisely one world is chosen randomly, using the natural probability distribution, as the world realised in Nature, and that this world's mathematical characterisation is a complete description of reality.Comment: Minor revisions. To appear in Foundations of Physic

    Avoiding deontic explosion by contextually restricting aggregation

    Get PDF
    In this paper, we present an adaptive logic for deontic conflicts, called P2.1(r), that is based on Goble's logic SDLaPe-a bimodal extension of Goble's logic P that invalidates aggregation for all prima facie obligations. The logic P2.1(r) has several advantages with respect to SDLaPe. For consistent sets of obligations it yields the same results as Standard Deontic Logic and for inconsistent sets of obligations, it validates aggregation "as much as possible". It thus leads to a richer consequence set than SDLaPe. The logic P2.1(r) avoids Goble's criticisms against other non-adjunctive systems of deontic logic. Moreover, it can handle all the 'toy examples' from the literature as well as more complex ones
    corecore