141,032 research outputs found
Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models
Global sensitivity analysis aims at quantifying the impact of input
variability onto the variation of the response of a computational model. It has
been widely applied to deterministic simulators, for which a set of input
parameters has a unique corresponding output value. Stochastic simulators,
however, have intrinsic randomness due to their use of (pseudo)random numbers,
so they give different results when run twice with the same input parameters
but non-common random numbers. Due to this random nature, conventional Sobol'
indices, used in global sensitivity analysis, can be extended to stochastic
simulators in different ways. In this paper, we discuss three possible
extensions and focus on those that depend only on the statistical dependence
between input and output. This choice ignores the detailed data generating
process involving the internal randomness, and can thus be applied to a wider
class of problems. We propose to use the generalized lambda model to emulate
the response distribution of stochastic simulators. Such a surrogate can be
constructed without the need for replications. The proposed method is applied
to three examples including two case studies in finance and epidemiology. The
results confirm the convergence of the approach for estimating the sensitivity
indices even with the presence of strong heteroskedasticity and small
signal-to-noise ratio
Confinement of matter fields in compact (2+1)-dimensional QED theory of high- superconductors
We study confinement of matter fields in the effective compact
(2+1)-dimensional QED theory of high- superconductors. It is shown that
the monopole configurations do not affect the propagator of gauge potential
. Based on this result, we found that: chiral symmetry breaking and
confinement take place simultaneously in the antiferromagnetic state; neither
monopole effect nor Anderson-Higgs mechanism can cause confinement in the
d-wave superconducting state.Comment: 5 pages, no figure
Single inclusive hadron production in pA collisions at NLO
We study single inclusive forward hadron production in high energy
proton-nucleus collisions at next-to-leading order in the Color Glass
Condensate framework. Recent studies have shown that the next-to-leading order
corrections to this process are large and negative at large transverse
momentum, leading to negative cross sections. We propose to overcome this
difficulty by introducing an explicit rapidity factorization scale when
subtracting the rapidity divergence into the evolution of the target.Comment: 6 pages, 2 figures. Proceedings of DIS 2016, 11-15 April 2016, DESY
  Hamburg, German
Gravitational Lensing Statistics as a Probe of Dark Energy
By using the comoving distance, we derive an analytic expression for the
optical depth of gravitational lensing, which depends on the redshift to the
source and the cosmological model characterized by the cosmic mass density
parameter , the dark energy density parameter  and its
equation of state . It is shown that, the larger the
dark energy density is and the more negative its pressure is, the higher the
gravitational lensing probability is. This fact can provide an independent
constraint for dark energy.Comment: 9 pages, 2 figure
Generation of tunable Terahertz out-of-plane radiation using Josephson vortices in modulated layered superconductors
We show that a moving Josephson vortex in spatially modulated layered
superconductors generates out-of-plane THz radiation. Remarkably, the magnetic
and in-plane electric fields radiated are of the same order, which is very
unusual for any good-conducting medium. Therefore, the out-of-plane radiation
can be emitted to the vacuum without the standard impedance mismatch problem.
Thus, the proposed design can be more efficient for tunable THz emitters than
previous proposals, for radiation only propagating along the ab-plane.Comment: 7 pages, 1 figure. Phys. Rev. B (2005), in pres
- …
