59,886 research outputs found
Optical properties of Mn4+ ions in GaN:Mn codoped with Mg acceptors
The optical properties of Mn-Mg codoped epitaxial GaN were studied. Addition
of Mg acceptors quenches the weak manganese-related photoluminescence (PL) band
at 1.3 eV in GaN:Mn and a series of sharp PL peaks are observed at 1 eV in
codoped epilayers. The change in PL spectra indicates that Mg addition
stabilizes the Mn4+ charge state by decreasing the Fermi level. The 1 eV PL
peaks are tentatively attributed to intra center transitions involving Mn4+
ions. Spin allowed 3d-shell 4T2-4T1 transitions and their phonon replicas are
involved. The relative intensities of the sharp peaks are strongly dependent on
the excitation wavelength, indicating the optically active Mn4+ centers
involved in the separate peaks are different. The temperature dependence of the
PL spectrum suggests the presence of at least three distinct Mn4+ complex
centers.Comment: 14 pages, 3 figures, 1 table, accepted by Appl. Phys. Let
On computation of the first Baues--Wirsching cohomology of a freely-generated small category
The Baues--Wirsching cohomology is one of the cohomologies of a small
category. Our aim is to describe the first Baues--Wirsching cohomology of the
small category generated by a finite quiver freely. We consider the case where
the coefficient is a natural system obtained by the composition of a functor
and the target functor. We give an algorithm to obtain generators of the vector
space of inner derivations. It is known that there exists a surjection from the
vector space of derivations of the small category to the first Baues--Wirsching
cohomology whose kernel is the vector space of inner derivations.Comment: 11 page
Colloidal Electrostatic Interactions Near a Conducting Surface
Charge-stabilized colloidal spheres dispersed in deionized water are supposed
to repel each other. Instead, artifact-corrected video microscopy measurements
reveal an anomalous long-ranged like-charge attraction in the interparticle
pair potential when the spheres are confined to a layer by even a single
charged glass surface. These attractions can be masked by electrostatic
repulsions at low ionic strengths. Coating the bounding surfaces with a
conducting gold layer suppresses the attraction. These observations suggest a
possible mechanism for confinement-induced attractions.Comment: 4 pages, 2 figure
Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit
We investigate the ionization dynamics of Argon atoms irradiated by an
ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum
distribution of the photoelectrons with near-zero-energy. We find a surprising
accumulation in the momentum distribution corresponding to meV energy and a
\textquotedblleft V"-like structure at the slightly larger transverse momenta.
Semiclassical simulations indicate the crucial role of the Coulomb attraction
between the escaping electron and the remaining ion at extremely large
distance. Tracing back classical trajectories, we find the tunneling electrons
born in a certain window of the field phase and transverse velocity are
responsible for the striking accumulation. Our theoretical results are
consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure
Structural, optical, magnetic and electrical properties of Zn1-x Co (x) O thin films
Despite a considerable effort aiming at elucidating the nature of
ferromagnetism in ZnO-based magnetic semiconductor, its origin still remains
debatable. Although the observation of above room temperature ferromagnetism
has been reported frequently in the literature by magnetometry measurement, so
far there has been no report on correlated ferromagnetism in magnetic, optical
and electrical measurements. In this paper, we investigate systematically the
structural, optical, magnetic and electrical properties of Zn1-x Co (x) O:Al
thin films prepared by sputtering with x ranging from 0 to 0.33. We show that
correlated ferromagnetism is present only in samples with x > 0.25. In
contrast, samples with x < 0.2 exhibit weak ferromagnetism only in magnetometry
measurement which is absent in optical and electrical measurements. We
demonstrate, by systematic electrical transport studies that carrier
localization indeed occurs below 20-50 K for samples with x < 0.2; however,
this does not lead to the formation of ferromagnetic phase in these samples
with an electron concentration in the range of 6 x 10(19) cm(-3) 1 x 10(20)
cm(-3). Detailed structural and optical transmission spectroscopy analyses
revealed that the anomalous Hall effect observed in samples with x > 0.25 is
due to the formation of secondary phases and Co clusters.Comment: 28 pages, 8 figure
- …