29,816 research outputs found

    Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field

    Full text link
    Inelastic tunneling through magnetically anisotropic molecules is studied theoretically in the presence of a strong magnetic field. Since the molecular orientation is not well controlled in tunneling experiments, we consider arbitrary angles between easy axis and field. This destroys all conservation laws except that of charge, leading to a rich fine structure in the differential conductance. Besides single molecules we also study monolayers of molecules with either aligned or random easy axes. We show that detailed information on the molecular transitions and orientations can be obtained from the differential conductance for varying magnetic field. For random easy axes, averaging over orientations leads to van Hove singularities in the differential conductance. Rate equations in the sequential-tunneling approximation are employed. An efficient approximation for their solution for complex molecules is presented. The results are applied to Mn12-based magnetic molecules.Comment: 10 pages, 10 figures include

    Trapping photons on the line: controllable dynamics of a quantum walk

    Full text link
    We demonstrate a coined quantum walk over ten steps in a one-dimensional network of linear optical elements. By applying single-point phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. We furthermore investigate how the level of phase due to single-point phase defects and coin settings influence the strength of the localization signature.Comment: 5 pages, 6 figure

    The noncommutative Kubo Formula: Applications to Transport in Disordered Topological Insulators with and without Magnetic Fields

    Full text link
    The non-commutative theory of charge transport in mesoscopic aperiodic systems under magnetic fields, developed by Bellissard, Shulz-Baldes and collaborators in the 90's, is complemented with a practical numerical implementation. The scheme, which is developed within a CC^*-algebraic framework, enable efficient evaluations of the non-commutative Kubo formula, with errors that vanish exponentially fast in the thermodynamic limit. Applications to a model of a 2-dimensional Quantum spin-Hall insulator are given. The conductivity tensor is mapped as function of Fermi level, disorder strength and temperature and the phase diagram in the plane of Fermi level and disorder strength is quantitatively derived from the transport simulations. Simulations at finite magnetic field strength are also presented.Comment: 10 figure
    corecore