45,525 research outputs found
Negative Cell Cycle Regulation and DNA Damage-inducible Phosphorylation of the BRCT Protein 53BP1
In a screen designed to discover suppressors of mitotic catastrophe, we identified the Xenopus ortholog of 53BP1 (X53BP1), a BRCT protein previously identified in humans through its ability to bind the p53 tumor suppressor. X53BP1 transcripts are highly expressed in ovaries, and the protein interacts with Xp53 throughout the cell cycle in embryonic extracts. However, no interaction between X53BP1 and Xp53 can be detected in somatic cells, suggesting that the association between the two proteins may be developmentally regulated. X53BP1 is modified via phosphorylation in a DNA damage-dependent manner that correlates with the dispersal of X53BP1 into multiple foci throughout the nucleus in somatic cells. Thus, X53BP1 can be classified as a novel participant in the DNA damage response pathway. We demonstrate that X53BP1 and its human ortholog can serve as good substrates in vitro as well as in vivo for the ATM kinase. Collectively, our results reveal that 53BP1 plays an important role in the checkpoint response to DNA damage, possibly in collaboration with ATM
Enhanced visibility of graphene: effect of one-dimensional photonic crystal
We investigate theoretically the light reflectance of a graphene layer
prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is
shown that the visibility of the graphene layers is enhanced greatly when 1DPC
is added, and the visibility can be tuned by changing the incident angle and
light wavelengths. This phenomenon is caused by the absorption of the graphene
layer and the enhanced reflectance of the 1DPC.Comment: 4 pages, 4 figures. published, ApplPhysLett_91_18190
Half-quantum vortex state in a spin-orbit coupled Bose-Einstein condensate
We investigate theoretically the condensate state and collective excitations
of a two-component Bose gas in two-dimensional harmonic traps subject to
isotropic Rashba spin-orbit coupling. In the weakly interacting regime when the
inter-species interaction is larger than the intra-species interaction
(), we find that the condensate ground state has a
half-quantum-angular-momentum vortex configuration with spatial rotational
symmetry and skyrmion-type spin texture. Upon increasing the interatomic
interaction beyond a threshold , the ground state starts to involve
higher-order angular momentum components and thus breaks the rotational
symmetry. In the case of , the condensate becomes
unstable towards the superposition of two degenerate half-quantum vortex
states. Both instabilities (at and ) can be
determined by solving the Bogoliubov equations for collective density
oscillations of the half-quantum vortex state, and by analyzing the softening
of mode frequencies. We present the phase diagram as functions of the
interatomic interactions and the spin-orbit coupling. In addition, we directly
simulate the time-dependent Gross-Pitaevskii equation to examine the dynamical
properties of the system. Finally, we investigate the stability of the
half-quantum vortex state against both the trap anisotropy and anisotropy in
the spin-orbit coupling term.Comment: 13 pages, 18 figure
- …
