520 research outputs found
Molecular dynamics study of solvation effects on acid dissociation in aprotic media
Acid ionization in aprotic media is studied using Molecular Dynamics
techniques. In particular, models for HCl ionization in acetonitrile and
dimethylsulfoxide are investigated. The proton is treated quantum mechanically
using Feynman path integral methods and the remaining molecules are treated
classically. Quantum effects are shown to be essential for the proper treatment
of the ionization. The potential of mean force is computed as a function of the
ion pair separation and the local solvent structure is examined. The computed
dissociation constants in both solvents differ by several orders of magnitude
which are in reasonable agreement with experimental results. Solvent separated
ion pairs are found to exist in dimethylsulfoxide but not in acetonitrile.
Dissociation mechanisms in small clusters are also investigated. Solvent
separated ion pairs persist even in aggregates composed of rather few
molecules, for instance, as few as thirty molecules. For smaller clusters or
for large ion pair separations cluster finite-size effects come into play in a
significant fashion.Comment: Plain LaTeX. To appear in JCP(March 15). Mpeg simulations available
at http://www.chem.utoronto.ca/staff/REK/Videos/clusters/clusters.htm
New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
We update the limit from the 90 GHz PIQUE ground-based polarimeter on the
magnitude of any polarized anisotropy of the cosmic microwave radiation. With a
second year of data, we have now limited both Q and U on a ring of 1 degree
radius. The window functions are broad: for E-mode polarization, the effective
l is = 191 +143 -132. We find that the E-mode signal can be no greater than
8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible
B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
Strong Phase Shifts for CP Violation in Weak Decay
Strong interaction phase shifts relevant for the weak
nonleptonic decay are calculated using baryon
chiral perturbation theory. We find in leading order that the S-wave phase
shift vanishes and the P-wave phase shift is .
The small phase shifts imply that CP violation in this decay will be difficult
to observe. Our results follow from chiral symmetry.Comment: 8 pages, uses phyzzx, 2 figures included as uuencoded file,
CALT-68-1940 and CMU-HEP94-2
CP Violation
Three possibilities for the origin of CP violation are discussed: (1) the
Standard Model in which all CP violation is due to one parameter in the CKM
matrix, (2) the superweak model in which all CP violation is due to new physics
and (3) the Standard Model plus new physics. A major goal of B physics is to
distinguish these possibilities. CP violation implies time reversal violation
(TRV) but direct evidence for TRV is difficult to obtain.Comment: 13 pages, to be published in Lecture Notes of TASI-2000, edited by
Jonathan L. Rosner, World Scientific, 200
Decay-Time Asymmetries at the B-Factories
Absract (Invited talk at the X DAE High Energy Physics symposium in December
1992, held at Tata Institute of Fundamental Research, Bombay)Comment: 20pages, TIFR/TH/93-1
A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales
A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on
the magnitude of any polarized anisotropy in the cosmic microwave background.
The combination of the scan strategy and full width half maximum beam of 0.235
degrees gives broad window functions with average multipoles, l = 211+294-146
and l = 212+229-135 for the E- and B-mode window functions, respectively. A
joint likelihood analysis yields simultaneous 95% confidence level flat band
power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode
angular power spectra, respectively. Assuming no B-modes, a 95% confidence
limit of 10 microkelvin is placed on the amplitude of the E-mode angular power
spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Demonstration of K-Kbar, B-Bbar, and D-Dbar Transitions with a Pair of Coupled Pendula
A setup of two coupled and damped pendula is used to demonstrate the main
features of transitions beween neutral K, D, B mesons and their respective
antiparticles, including CP violation in K Kbar transitions. The transitions
are described by two-state Schr\"odinger equations. Since the real parts of
their solutions obey the same differential equations as the pendula
coordinates, the pendulum motions can be used to represent the meson
transitions. Video clips of the motions are attached as supplementary material.Comment: 15 pages, 6 figure
Strong rescattering in K-> 3pi decays and low-energy meson dynamics
We present a consistent analysis of final state interactions in
decays in the framework of Chiral Perturbation Theory.
The result is that the kinematical dependence of the rescattering phases cannot
be neglected. The possibility of extracting the phase shifts from future
interference experiments is also analyzed.Comment: 14 pages in RevTex, 3 figures in postscrip
- âŠ