2,971 research outputs found
Clones in Graphs
Finding structural similarities in graph data, like social networks, is a
far-ranging task in data mining and knowledge discovery. A (conceptually)
simple reduction would be to compute the automorphism group of a graph.
However, this approach is ineffective in data mining since real world data does
not exhibit enough structural regularity. Here we step in with a novel approach
based on mappings that preserve the maximal cliques. For this we exploit the
well known correspondence between bipartite graphs and the data structure
formal context from Formal Concept Analysis. From there we utilize
the notion of clone items. The investigation of these is still an open problem
to which we add new insights with this work. Furthermore, we produce a
substantial experimental investigation of real world data. We conclude with
demonstrating the generalization of clone items to permutations.Comment: 11 pages, 2 figures, 1 tabl
An application of simulated annealing to the optimum design of reinforced concrete retaining structures
This paper reports on the application of a simulated annealing algorithm to the minimum cost design of reinforced concrete retaining structures. Cantilever retaining walls are investigated, being representative of reinforced concrete retaining structures that are required to resist a combination of earth and hydrostatic loading. To solve such a constrained optimisation problem, a modified simulated annealing algorithm is proposed that avoids the simple rejection of infeasible solutions and improves convergence to a minimum cost. The algorithm was implemented using an object-orientated visual programming language, offering facilities for continual monitoring, assessing and changing of the simulated annealing control parameters. Results show that the simulated annealing can be successfully applied to the minimum cost design of reinforced concrete retaining walls, overcoming the difficulties associated with the practical and realistic assessment of the structural costs and their complex inter-relationship with the imposed constraints on the solution space
Data taking strategy for the phase study in
The study of the relative phase between strong and electromagnetic amplitudes
is of great importance for understanding the dynamics of charmonium decays. The
information of the phase can be obtained model-independently by fitting the
scan data of some special decay channels, one of which is . To find out the optimal data taking strategy for a scan experiment
in the measurement of the phase in , the
minimization process is analyzed from a theoretical point of view. The result
indicates that for one parameter fit, only one data taking point in the
vicinity of a resonance peak is sufficient to acquire the optimal precision.
Numerical results are obtained by fitting simulated scan data. Besides the
results related to the relative phase between strong and electromagnetic
amplitudes, the method is extended to analyze the fits of other resonant
parameters, such as the mass and the total decay width of .Comment: 13 pages, 7 figure
NP-hardness of the cluster minimization problem revisited
The computational complexity of the "cluster minimization problem" is
revisited [L. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985)]. It is argued
that the original NP-hardness proof does not apply to pairwise potentials of
physical interest, such as those that depend on the geometric distance between
the particles. A geometric analog of the original problem is formulated, and a
new proof for such potentials is provided by polynomial time transformation
from the independent set problem for unit disk graphs. Limitations of this
formulation are pointed out, and new subproblems that bear more direct
consequences to the numerical study of clusters are suggested.Comment: 8 pages, 2 figures, accepted to J. Phys. A: Math. and Ge
Evaluation of the surface strength of glass plates shaped by hot slumping process
The Hot Slumping Technology is under development by several research groups
in the world for the realization of grazing-incidence segmented mirrors for
X-ray astronomy, based on thin glass plates shaped over a mould at temperatures
above the transformation point. The performed thermal cycle and related
operations might have effects on the strength characteristics of the glass,
with consequences on the structural design of the elemental optical modules and
consecutively on the entire X-ray optic for large astronomical missions like
IXO and ATHENA. The mechanical strength of glass plates after they underwent
the slumping process was tested through destructive double-ring tests in the
context of a study performed by the Astronomical Observatory of Brera with the
collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire
study has been realized on more than 200 D263 Schott borosilicate glass
specimens of dimension 100 mm x 100 mm and thickness 0.4 mm, either flat or
bent at a Radius of Curvature of 1000 mm through the particular pressure
assisted hot slumping process developed by INAF-OAB. The collected experimental
data have been compared to non-linear FEM analyses and treated with Weibull
statistic to assess the current IXO glass X-ray telescope design, in terms of
survival probability, when subject to static and acoustic loads characteristic
of the launch phase. The paper describes the activities performed and presents
the obtained results.Comment: Accepted for publication in Optical Enginnering (Jun 26, 2014
Solarização, biofumigação e uso de rizobactérias no controle de Meloidogyne incognita em pimenta.
Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet
Ruthenium compounds play prominent roles in materials research ranging from
oxide electronics to catalysis, and serve as a platform for fundamental
concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and
solid-state analogues of the Higgs mode in particle physics. However, basic
questions about the electronic structure of ruthenates remain unanswered,
because several key parameters (including the Hund's-rule, spin-orbit, and
exchange interactions) are comparable in magnitude, and their interplay is
poorly understood - partly due to difficulties in synthesizing sizable single
crystals for spectroscopic experiments. Here we introduce a resonant inelastic
x-ray scattering (RIXS) technique capable of probing collective modes in
microcrystals of -electron materials. We present a comprehensive set of
data on spin waves and spin-state transitions in the honeycomb antiferromagnet
SrRuO, which possesses an unusually high N\'eel temperature. The
new RIXS method provides fresh insight into the unconventional magnetism of
SrRuO, and enables momentum-resolved spectroscopy of a large class
of transition-metal compounds.Comment: The original submitted version of the published manuscript.
https://www.nature.com/articles/s41563-019-0327-
- …
