94 research outputs found

    Security Assessment Using Neural Computing

    Get PDF
    The advantage of fast computation capability of an artificial neural network (ANN) is used to introduce an iterative scheme for security assessment of power systems. Two related approaches are shown which demonstratedly work satisfactorily. The idea of feedback in a single-layer feedforward neural network is experimented yielding higher accuracy. The ANN is trained by using a set of data obtained from off-line analysis of the power network. After training, an approximate solution for a given condition may be found almost immediately. The approximate solution obtained is judged adequate for assessing the security of the power system. A case study is also presented for demonstrating the applicability of the approach

    Fast Power Flow with Capability of Corrective Control Using a Neural Network

    Get PDF
    The authors present a number of different configurations of a neural network and identify a particular case which is most suitable for power flow analysis in real-time applications. The advantage of fast computation of the artificial neural network (ANN) is used for obtaining power flow solutions in real time. The inputs to the ANN are the real and reactive power generating and demand in the system, and the output data are the complex bus voltages. A few configurations of the neural network were experimented with, and the best results were achieved with a single-layer feedforward neural network with nonlinear feedback. By using the trained neural network, an approximate solution of power flow can be obtained almost immediately. One particular configuration of the ANN can be used for determining corrective strategies during abnormal conditions of the power syste

    Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells

    Full text link
    Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si quantum wells we determine the carrier-density-dependence of the magnetic susceptibility. Assuming weak interaction we evaluate the density of states at the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11 cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the mobility from q_TF yields good agreement with experimental values justifying the approach. The decrease in D(E_F) is explained by potential fluctuations which lead to tail states that make screening less efficient and - in a positive feedback - cause an increase of the potential fluctuations. Even in our high mobility samples the fluctuations exceed the electron-electron interaction leading to the formation of puddles of mobile carriers with at least 1 micrometer diameter.Comment: 4 pages, 3 figure

    Integrating Power Engineering Topics and Applications in Non-Power Courses

    Get PDF
    This paper investigates integrating power engineering material over the breadth of an electrical engineering curriculum. Electrical engineering curricula have a large number of required courses and many subareas for students to study. By introducing power concepts in a variety of courses, students may be motivated to take additional courses in the power area and are better prepared for the diverse background which will be required of them as practising power engineers. The important interrelationships between subareas of electrical engineering are better understood by students when cross discipline applications are discussed. This paper describes the introduction of power concepts and applications in courses such as linear systems, digital systems, microprocessors, digital signal processing, electronic system design and electrical materials

    Spin relaxation in quantum dots with random spin-orbit coupling

    Full text link
    We investigate the longitudinal spin relaxation arising due to spin-flip transitions accompanied by phonon emission in quantum dots where the strength of the Rashba spin-orbit coupling is a random function of the lateral (in-plane) coordinate on the spatial nanoscale. In this case the Rashba contribution to the spin-orbit coupling cannot be completely removed by applying a uniform external bias across the quantum dot plane. Due to the remnant random contribution, the spin relaxation rate cannot be decreased by more than two orders of magnitude even when the external bias fully compensates the regular part of the spin-orbit coupling.Comment: 13 pages, 4 figure

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    Molecular Characterization of Borrelia persica, the Agent of Tick Borne Relapsing Fever in Israel and the Palestinian Authority

    Get PDF
    The identification of the Tick Borne Relapsing Fever (TBRF) agent in Israel and the Palestinian Authority relies on the morphology and the association of Borrelia persica with its vector Ornithodoros tholozani. Molecular based data on B. persica are very scarce as the organism is still non-cultivable. In this study, we were able to sequence three complete 16S rRNA genes, 12 partial flaB genes, 18 partial glpQ genes, 16 rrs-ileT intergenic spacers (IGS) from nine ticks and ten human blood samples originating from the West Bank and Israel. In one sample we sequenced 7231 contiguous base pairs that covered completely the region from the 5′end of the 16S rRNA gene to the 5′end of the 23S rRNA gene comprising the whole 16S rRNA (rrs), and the following genes: Ala tRNA (alaT), Ile tRNA (ileT), adenylosuccinate lyase (purB), adenylosuccinate synthetase (purA), methylpurine-DNA glycosylase (mag), hypoxanthine-guanine phosphoribosyltransferase (hpt), an hydrolase (HAD superfamily) and a 135 bp 5′ fragment of the 23S rRNA (rrlA) genes. Phylogenic sequence analysis defined all the Borrelia isolates from O. tholozani and from human TBRF cases in Israel and the West Bank as B. persica that clustered between the African and the New World TBRF species. Gene organization of the intergenic spacer between the 16S rRNA and the 23S rRNA was similar to that of other TBRF Borrelia species and different from the Lyme disease Borrelia species. Variants of B. persica were found among the different genes of the different isolates even in the same sampling area

    Spin Dynamics and Spin Transport

    Full text link
    Spin-orbit (SO) interaction critically influences electron spin dynamics and spin transport in bulk semiconductors and semiconductor microstructures. This interaction couples electron spin to dc and ac electric fields. Spin coupling to ac electric fields allows efficient spin manipulating by the electric component of electromagnetic field through the electric dipole spin resonance (EDSR) mechanism. Usually, it is much more efficient than the magnetic manipulation due to a larger coupling constant and the easier access to spins at a nanometer scale. The dependence of the EDSR intensity on the magnetic field direction allows measuring the relative strengths of the competing SO coupling mechanisms in quantum wells. Spin coupling to an in-plane electric field is much stronger than to a perpendicular field. Because electron bands in microstructures are spin split by SO interaction, electron spin is not conserved and spin transport in them is controlled by a number of competing parameters, hence, it is rather nontrivial. The relation between spin transport, spin currents, and spin populations is critically discussed. Importance of transients and sharp gradients for generating spin magnetization by electric fields and for ballistic spin transport is clarified.Comment: Invited talk at the 3rd Intern. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), July 21 - 23. To be published in the Journal of Superconductivity. 7 pages, 2 figure

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore