94 research outputs found
Security Assessment Using Neural Computing
The advantage of fast computation capability of an artificial neural network (ANN) is used to introduce an iterative scheme for security assessment of power systems. Two related approaches are shown which demonstratedly work satisfactorily. The idea of feedback in a single-layer feedforward neural network is experimented yielding higher accuracy. The ANN is trained by using a set of data obtained from off-line analysis of the power network. After training, an approximate solution for a given condition may be found almost immediately. The approximate solution obtained is judged adequate for assessing the security of the power system. A case study is also presented for demonstrating the applicability of the approach
Fast Power Flow with Capability of Corrective Control Using a Neural Network
The authors present a number of different configurations of a neural network and identify a particular case which is most suitable for power flow analysis in real-time applications. The advantage of fast computation of the artificial neural network (ANN) is used for obtaining power flow solutions in real time. The inputs to the ANN are the real and reactive power generating and demand in the system, and the output data are the complex bus voltages. A few configurations of the neural network were experimented with, and the best results were achieved with a single-layer feedforward neural network with nonlinear feedback. By using the trained neural network, an approximate solution of power flow can be obtained almost immediately. One particular configuration of the ANN can be used for determining corrective strategies during abnormal conditions of the power syste
Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells
Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si
quantum wells we determine the carrier-density-dependence of the magnetic
susceptibility. Assuming weak interaction we evaluate the density of states at
the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant
at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11
cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the
mobility from q_TF yields good agreement with experimental values justifying
the approach. The decrease in D(E_F) is explained by potential fluctuations
which lead to tail states that make screening less efficient and - in a
positive feedback - cause an increase of the potential fluctuations. Even in
our high mobility samples the fluctuations exceed the electron-electron
interaction leading to the formation of puddles of mobile carriers with at
least 1 micrometer diameter.Comment: 4 pages, 3 figure
Integrating Power Engineering Topics and Applications in Non-Power Courses
This paper investigates integrating power engineering material over the breadth of an electrical engineering curriculum. Electrical engineering curricula have a large number of required courses and many subareas for students to study. By introducing power concepts in a variety of courses, students may be motivated to take additional courses in the power area and are better prepared for the diverse background which will be required of them as practising power engineers. The important interrelationships between subareas of electrical engineering are better understood by students when cross discipline applications are discussed. This paper describes the introduction of power concepts and applications in courses such as linear systems, digital systems, microprocessors, digital signal processing, electronic system design and electrical materials
Spin relaxation in quantum dots with random spin-orbit coupling
We investigate the longitudinal spin relaxation arising due to spin-flip
transitions accompanied by phonon emission in quantum dots where the strength
of the Rashba spin-orbit coupling is a random function of the lateral
(in-plane) coordinate on the spatial nanoscale. In this case the Rashba
contribution to the spin-orbit coupling cannot be completely removed by
applying a uniform external bias across the quantum dot plane. Due to the
remnant random contribution, the spin relaxation rate cannot be decreased by
more than two orders of magnitude even when the external bias fully compensates
the regular part of the spin-orbit coupling.Comment: 13 pages, 4 figure
Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions
The interrelation between disorder and interactions in two dimensional
electron liquid is studied beyond weak coupling perturbation theory. Strong
repulsion significantly reduces the electronic density of states on the Fermi
level. This makes the electron liquid more rigid and strongly suppresses
elastic scattering off impurities. As a result the weak localization, although
ultimately present at zero temperature and infinite sample size, is
unobservable at experimentally accessible temperature at high enough densities.
Therefore practically there exists a well defined metallic state. We study
diffusion of electrons in this state and find that the diffusion pole is
significantly modified due to "mixture" with static photons similar to the
Anderson - Higgs mechanism in superconductivity. As a result several effects
stemming from the long range nature of diffusion like the Aronov - Altshuler
logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.
Molecular Characterization of Borrelia persica, the Agent of Tick Borne Relapsing Fever in Israel and the Palestinian Authority
The identification of the Tick Borne Relapsing Fever (TBRF) agent in Israel and the Palestinian Authority relies on the morphology and the association of Borrelia persica with its vector Ornithodoros tholozani. Molecular based data on B. persica are very scarce as the organism is still non-cultivable. In this study, we were able to sequence three complete 16S rRNA genes, 12 partial flaB genes, 18 partial glpQ genes, 16 rrs-ileT intergenic spacers (IGS) from nine ticks and ten human blood samples originating from the West Bank and Israel. In one sample we sequenced 7231 contiguous base pairs that covered completely the region from the 5′end of the 16S rRNA gene to the 5′end of the 23S rRNA gene comprising the whole 16S rRNA (rrs), and the following genes: Ala tRNA (alaT), Ile tRNA (ileT), adenylosuccinate lyase (purB), adenylosuccinate synthetase (purA), methylpurine-DNA glycosylase (mag), hypoxanthine-guanine phosphoribosyltransferase (hpt), an hydrolase (HAD superfamily) and a 135 bp 5′ fragment of the 23S rRNA (rrlA) genes. Phylogenic sequence analysis defined all the Borrelia isolates from O. tholozani and from human TBRF cases in Israel and the West Bank as B. persica that clustered between the African and the New World TBRF species. Gene organization of the intergenic spacer between the 16S rRNA and the 23S rRNA was similar to that of other TBRF Borrelia species and different from the Lyme disease Borrelia species. Variants of B. persica were found among the different genes of the different isolates even in the same sampling area
Spin Dynamics and Spin Transport
Spin-orbit (SO) interaction critically influences electron spin dynamics and
spin transport in bulk semiconductors and semiconductor microstructures. This
interaction couples electron spin to dc and ac electric fields. Spin coupling
to ac electric fields allows efficient spin manipulating by the electric
component of electromagnetic field through the electric dipole spin resonance
(EDSR) mechanism. Usually, it is much more efficient than the magnetic
manipulation due to a larger coupling constant and the easier access to spins
at a nanometer scale. The dependence of the EDSR intensity on the magnetic
field direction allows measuring the relative strengths of the competing SO
coupling mechanisms in quantum wells. Spin coupling to an in-plane electric
field is much stronger than to a perpendicular field. Because electron bands in
microstructures are spin split by SO interaction, electron spin is not
conserved and spin transport in them is controlled by a number of competing
parameters, hence, it is rather nontrivial. The relation between spin
transport, spin currents, and spin populations is critically discussed.
Importance of transients and sharp gradients for generating spin magnetization
by electric fields and for ballistic spin transport is clarified.Comment: Invited talk at the 3rd Intern. Conf. on Physics and Applications of
Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), July 21 - 23.
To be published in the Journal of Superconductivity. 7 pages, 2 figure
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- …