35 research outputs found

    Accurate isolation and detection of circulating tumor cells using enrichment-free multiparametric high resolution imaging

    Get PDF
    IntroductionThe reliable and accurate detection of rare circulating tumor cells (CTCs) from cancer patient blood samples promises advantages in both research and clinical applications. Numerous CTC detection methods have been explored that rely on either the physical properties of CTCs such as density, size, charge, and/or their antigen expression profiles. Multiple factors can influence CTC recovery including blood processing method and time to processing. This study aimed to examine the accuracy and sensitivity of an enrichment-free method of isolating leukocytes (AccuCyte® system) followed by immunofluorescence staining and high-resolution imaging (CyteFinder® instrument) to detect CTCs.MethodHealthy human blood samples, spiked with cancer cells from cancer cell lines, as well as blood samples obtained from 4 subjects diagnosed with cancer (2 pancreatic, 1 thyroid, and 1 small cell lung) were processed using the AccuCyte-CyteFinder system to assess recovery rate, accuracy, and reliability over a range of processing times.ResultsThe AccuCyte-CyteFinder system was highly accurate (95.0%) at identifying cancer cells in spiked-in samples (in 7.5 mL of blood), even at low spiked-in numbers of 5 cells with high sensitivity (90%). The AccuCyte-CyteFinder recovery rate (90.9%) was significantly higher compared to recovery rates obtained by density gradient centrifugation (20.0%) and red blood cell lysis (52.0%). Reliable and comparable recovery was observed in spiked-in samples and in clinical blood samples processed up to 72 hours post-collection. Reviewer analysis of images from spiked-in and clinical samples resulted in high concordance (R-squared value of 0.998 and 0.984 respectively).DiscussionThe AccuCyte-CyteFinder system is as an accurate, sensitive, and clinically practical method to detect and enumerate cancer cells. This system addresses some of the practical logistical challenges in incorporating CTCs as part of routine clinical care. This could facilitate the clinical use of CTCs in guiding precision, personalized medicine

    Vertical Integration and Media Regulation in the New Economy

    Full text link

    Effects of 17beta-estradiol and progesterone on transcription of human papillomavirus 16 E6/E7 oncogenes in CaSki and SiHa cell lines

    No full text
    Several in vitro studies have addressed the interactions between estrogen/progesterone and human papillomavirus (HPV), but the results are controversial. We evaluated the effects of estrogen and progesterone and their antagonists on messenger RNA expression of HPV16 E6/E7 in HPV16-positive cell lines CaSki and SiHa with real-time reverse-transciptase polymerase chain reaction method. Colorimetric assay with tetrazolium salt (WST-1) and flow cytometry were used for testing proliferation and apoptosis. No statistically significant changes were found after hormone treatment in the expression of HPV16 E6/E7 or hormone receptors in CaSki and SiHa cell lines. Progesterone increased cell proliferation in both the cells, while estrogen increased proliferation of SiHa cells only. Estrogen seemed to protect the CaSki cells from apoptosis, and tamoxifen did not abrogate this effect. Progesterone slightly increased apoptosis of CaSki cells, and this effect was neutralized with RU486. In this study, estrogen and progesterone did not change either the transcription levels of HPV16 E6/E7 or estrogen receptor or progesterone receptor levels. Hormone receptor antagonists had no effect on transcription. Both hormones might have a permissive effect for the growth of cervical cancer, by promoting cell proliferation and making the cells vulnerable to mutations. In addition, estrogen acts as an antiapoptotic agent allowing growth advance of the cells infected with oncogenic HPV
    corecore