161 research outputs found
Constant Rank Bimatrix Games are PPAD-hard
The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash
equilibrium (NE) of a rank-, i.e., zero-sum game is equivalent to linear
programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an
FPTAS for constant rank games, and asked if there exists a polynomial time
algorithm to compute an exact NE. Adsul et al. (2011) answered this question
affirmatively for rank- games, leaving rank-2 and beyond unresolved.
In this paper we show that NE computation in games with rank , is
PPAD-hard, settling a decade long open problem. Interestingly, this is the
first instance that a problem with an FPTAS turns out to be PPAD-hard. Our
reduction bypasses graphical games and game gadgets, and provides a simpler
proof of PPAD-hardness for NE computation in bimatrix games. In addition, we
get:
* An equivalence between 2D-Linear-FIXP and PPAD, improving a result by
Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD.
* NE computation in a bimatrix game with convex set of Nash equilibria is as
hard as solving a simple stochastic game.
* Computing a symmetric NE of a symmetric bimatrix game with rank is
PPAD-hard.
* Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP)
piecewise-linear function is PPAD-hard.
The status of rank- games remains unresolved
Settling Some Open Problems on 2-Player Symmetric Nash Equilibria
Over the years, researchers have studied the complexity of several decision
versions of Nash equilibrium in (symmetric) two-player games (bimatrix games).
To the best of our knowledge, the last remaining open problem of this sort is
the following; it was stated by Papadimitriou in 2007: find a non-symmetric
Nash equilibrium (NE) in a symmetric game. We show that this problem is
NP-complete and the problem of counting the number of non-symmetric NE in a
symmetric game is #P-complete.
In 2005, Kannan and Theobald defined the "rank of a bimatrix game"
represented by matrices (A, B) to be rank(A+B) and asked whether a NE can be
computed in rank 1 games in polynomial time. Observe that the rank 0 case is
precisely the zero sum case, for which a polynomial time algorithm follows from
von Neumann's reduction of such games to linear programming. In 2011, Adsul et.
al. obtained an algorithm for rank 1 games; however, it does not solve the case
of symmetric rank 1 games. We resolve this problem
Two-population replicator dynamics and number of Nash equilibria in random matrix games
We study the connection between the evolutionary replicator dynamics and the
number of Nash equilibria in large random bi-matrix games. Using techniques of
disordered systems theory we compute the statistical properties of both, the
fixed points of the dynamics and the Nash equilibria. Except for the special
case of zero-sum games one finds a transition as a function of the so-called
co-operation pressure between a phase in which there is a unique stable fixed
point of the dynamics coinciding with a unique Nash equilibrium, and an
unstable phase in which there are exponentially many Nash equilibria with
statistical properties different from the stationary state of the replicator
equations. Our analytical results are confirmed by numerical simulations of the
replicator dynamics, and by explicit enumeration of Nash equilibria.Comment: 9 pages, 2x2 figure
Games of timing with detection uncertainty and numerical estimates
Mobility and terrain are two sides of the same coin. We cannot speak to our mobility unless we describe the terrain's ability to thwart our maneuver. Game theory describes the interactions of rational players who behave strategically. In previous work1 we described the interactions between a mobility player, who is trying to maximize the chances that he makes it from point A to point B with one chance to refuel, and a terrain player who is trying to minimize that probability by placing an obstacle somewhere along the path from A to B. This relates to the literature of games of incomplete information, and can be thought of as a more realistic model of this interaction. In this paper, we generalize the game of timing studied in the previous paper to include the possibility that both players have imperfect ability to detect his adversary
Statistical mechanics of random two-player games
Using methods from the statistical mechanics of disordered systems we analyze
the properties of bimatrix games with random payoffs in the limit where the
number of pure strategies of each player tends to infinity. We analytically
calculate quantities such as the number of equilibrium points, the expected
payoff, and the fraction of strategies played with non-zero probability as a
function of the correlation between the payoff matrices of both players and
compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see
http://itp.nat.uni-magdeburg.de/~jberg/games.htm
Non-zero-sum Dresher inspection games
Dedicated to the memory of Eckhard Hopnger (1941{1990
Characterizations of perfect recall
This paper considers the condition of perfect recall for the class of arbitrarily large discrete extensive form games. The known definitions of perfect recall are shown to be equivalent even beyond finite games. Further, a qualitatively new characterization in terms of choices is obtained. In particular, an extensive form game satisfies perfect recall if and only if the set of choices, viewed as sets of ultimate outcomes, fulfill the Trivial Intersection property, that is, any two choices with nonempty intersection are ordered by set inclusion
The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form
We consider the task of computing an approximation of a trembling hand
perfect equilibrium for an n-player game in strategic form, n >= 3. We show
that this task is complete for the complexity class FIXP_a. In particular, the
task is polynomial time equivalent to the task of computing an approximation of
a Nash equilibrium in strategic form games with three (or more) players.Comment: conference version to appear at SAGT'1
- …