82 research outputs found

    Negative Energy Density States for the Dirac Field in Flat Spacetime

    Get PDF
    Negative energy densities in the Dirac field produced by state vectors that are the superposition of two single particle electron states are examined. I show that for such states the energy density of the field is not bounded from below and that the quantum inequalities derived for scalar fields are satisfied. I also show that it is not possible to produce negative energy densities in a scalar field using state vectors that are arbitrary superpositions of single particle states.Comment: 11 pages, LaTe

    Born-Infeld-Einstein theory with matter

    Full text link
    The field equations associated with the Born-Infeld-Einstein action including matter are derived using a Palatini variational principle. Scalar, electromagnetic, and Dirac fields are considered. It is shown that an action can be chosen for the scalar field that produces field equations identical to the usual Einstein field equations minimally coupled to a scalar field. In the electromagnetic and Dirac cases the field equations reproduce the standard equations only to lowest order. The spherically symmetric electrovac equations are studied in detail. It is shown that the resulting Einstein equations correspond to gravity coupled to a modified Born-Infeld theory. It is also shown that point charges are not allowed. All particles must have a finite size. Mass terms for the fields are also considered.Comment: 12 pages, LaTe

    Quantum Weak Energy Inequalities for the Dirac field in Flat Spacetime

    Full text link
    Quantum Weak Energy Inequalities (QWEIs) have been established for a variety of quantum field theories in both flat and curved spacetimes. Dirac fields are known (by a result of Fewster and Verch) to satisfy QWEIs under very general circumstances. However this result does not provide an explicit formula for the QWEI bound, so its magnitude has not previously been determined. In this paper we present a new and explicit QWEI bound for Dirac fields of arbitrary mass in four-dimensional Minkowski space. We follow the methods employed by Fewster and Eveson for the scalar field, modified to take account of anticommutation relations. A key ingredient is an identity for Fourier transforms established by Fewster and Verch. We also compare our QWEI with those previously obtained for scalar and spin-1 fields.Comment: 8 pages, REVTeX4, version to appear in Phys Rev

    Exact solutions of charged wormhole

    Get PDF
    In this paper, the backreaction to the traversable Lorentzian wormhole spacetime by the scalar field or electric charge is considered to find the exact solutions. The charges play the role of the additional matter to the static wormhole which is already constructed by the exotic matter. The stability conditions for the wormhole with scalar field and electric charge are found from the positiveness and flareness for the wormhole shape function.Comment: 9 pages, Revtex, no figures, to appear in Phys. Rev. D(2001

    Non-singular Universes a la Palatini

    Get PDF
    It has recently been shown that f(R) theories formulated in the Palatini variational formalism are able to avoid the big bang singularity yielding instead a bouncing solution. The mechanism responsible for this behavior is similar to that observed in the effective dynamics of loop quantum cosmology and an f(R) theory exactly reproducing that dynamics has been found. I will show here that considering more general actions, with quadratic contributions of the Ricci tensor, results in a much richer phenomenology that yields bouncing solutions even in anisotropic (Bianchi I) scenarios. Some implications of these results are discussed.Comment: 4 pages, no figures. Contribution to the Spanish Relativity Meeting (ERE2010), 6-10 Sept. Granada, Spai

    Quantum field theory and time machines

    Full text link
    We analyze the "F-locality condition" (proposed by Kay to be a mathematical implementation of a philosophical bias related to the equivalence principle, we call it the "GH-equivalence principle"), which is often used to build a generalization of quantum field theory to non-globally hyperbolic spacetimes. In particular we argue that the theorem proved by Kay, Radzikowski, and Wald to the effect that time machines with compactly generated Cauchy horizons are incompatible with the F-locality condition actually does not support the "chronology protection conjecture", but rather testifies that the F-locality condition must be modified or abandoned. We also show that this condition imposes a severe restriction on the geometry of the world (it is just this restriction that comes into conflict with the existence of a time machine), which does not follow from the above mentioned philosophical bias. So, one need not sacrifice the GH-equivalence principle to "emend" the F-locality condition. As an example we consider a particular modification, the "MF-locality condition". The theory obtained by replacing the F-locality condition with the MF-locality condition possesses a few attractive features. One of them is that it is consistent with both locality and the existence of time machines.Comment: Revtex, 14 pages, 1 .ps figure. To appear in Phys. Rev. D More detailed discussion is given on the MF-locality condition. Minor corrections in terminolog

    A Note on Energy-Momentum Conservation in Palatini Formulation of L(R) Gravity

    Full text link
    By establishing that Palatini formulation of L(R)L(R) gravity is equivalent to ω=3/2\omega=-3/2 Brans-Dicke theory, we show that energy-momentum tensor is covariantly conserved in this type of modified gravity theory.Comment: 7 page

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late

    Effective action and motion of a cosmic string

    Full text link
    We examine the leading order corrections to the Nambu effective action for the motion of a cosmic string, which appear at fourth order in the ratio of the width to radius of curvature of the string. We determine the numerical coefficients of these extrinsic curvature corrections, and derive the equations of motion of the worldsheet. Using these equations, we calculate the corrections to the motion of a collapsing loop, a travelling wave, and a helical breather. From the numerical coefficients we have calculated, we discuss whether the string motion can be labelled as `rigid' or `antirigid,' and hence whether cusp or kink formation might be suppressed or enhanced.Comment: 24 pages revtex, 12 figure

    The Structure of Cosmic String Wakes

    Get PDF
    The clustering of baryons and cold dark matter induced by a single moving string is analyzed numerically making use of a new three-dimensional Eulerian cosmological hydro code1)^{1)} which is based on the PPM method to track the baryons and the PIC method to evolve the dark matter particles. A long straight string moving with a speed comparable to cc induces a planar overdensity (a``wake"). Since the initial perturbation is a velocity kick towards the plane behind the string and there is no initial Newtonian gravitational line source, the baryons are trapped in the center of the wake, leading to an enhanced baryon to dark matter ratio. The cold coherent flow leads to very low post--shock temperatures of the baryonic fluid. In contrast, long strings with a lot of small-scale structure (which can be described by adding a Newtonian gravitational line source) move slowly and form filamentary objects. The large central pressure due to the gravitational potential causes the baryons to be expelled from the central regions and leads to a relative deficit in the baryon to dark matter ratio. In this case, the velocity of the baryons is larger, leading to high post-shock temperatures.Comment: 36 pages (including 19 figures), TeX (with phyzzx) type, mpeg simulations available at http://www.damtp.cam.ac.uk/user/ats25
    corecore