139 research outputs found

    Cooperative role of thrombopoietin and vascular endothelial growth factor-a in the progression of liver cirrhosis to hepatocellular carcinoma

    Get PDF
    Primary thrombopoietic mediator thrombopoietin (THPO) is mainly produced by the liver; it may act as a growth factor for hepatic progenitors. Principal angiogenesis inducer vascular endothelial growth factor-A (VEGF-A) is critical for the complex vascular network within the liver architecture. As a cross-regulatory loop between THPO and VEGF-A has been demonstrated in the hematopoietic system, the two growth factors were hypothesized to cooperatively contribute to the progression from liver cirrhosis (LC) to hepatocellular carcinoma (HCC). The mRNA and protein expression levels of THPO, VEGF-A, and their receptors were examined, compared, and correlated in paired cancerous and LC tissues from 26 cirrhosis-related HCC patients, using qRT-PCR and immunohistochemistry. THPO and VEGF-A were alternatively silenced by small interfering RNA (siRNA) in human liver cancer cell lines Huh7 and HepG2. THPO and VEGF-A expressions significantly increased in tumor versus LC tissues. HCC and paired LC cells expressed similar levels of THPO receptor (R), whereas vascular endothelial growth factor receptor (VEGFR) -1 and VEGFR-2 levels were higher in HCC than in corresponding LC tissue samples. A significant linear correlation emerged between THPO and VEGF-A transcripts in HCC and, at the protein level, THPO and THPOR were significantly correlated with VEGF-A in tumor tissues. Both HCC and LC expressed similar levels of gene and protein hypoxia inducible factor (HIF)-1α. Positive cross-regulation occurred with the alternative administration of siRNAs targeting THPO and those targeting VEGF-A in hypoxic liver cancer cell lines. These results suggest THPO and VEGF-A might act as interdependently regulated autocrine and/or paracrine systems for cellular growth in HCC. This might be clinically interesting, since new classes of THPOR agonistic/antagonistic drugs may provide novel therapeutic options to correct the frequent hemostatic abnormality seen in HCC patients

    MiR-1227 targets SEC23A to regulate the shedding of large extracellular vesicles

    Get PDF
    Cancer cells shed a heterogenous mixture of extracellular vesicles (EVs), differing in both size and composition, which likely influence physiological processes in different manners. However, how cells differentially control the shedding of these EV populations is poorly understood. Here, we show that miR-1227, which is enriched in prostate cancer EVs, compared to the cell of origin, but not in EVs derived from prostate benign epithelial cells, induces the shedding of large EVs (such as large oncosomes), while inhibiting the shedding of small EVs (such as exosomes). RNA sequencing from cells stably expressing miR-1227, a modified RISCTRAP assay that stabilizes and purifies mRNA-miR-1227 complexes for RNA sequencing, and in silico target prediction tools were used to identify miR-1227 targets that may mediate this alteration in EV shedding. The COPII vesicle protein SEC23A emerged and was validated by qPCR, WBlot, and luciferase assays as a direct target of miR-1227. The inhibition of SEC23A was sufficient to induce the shedding of large EVs. These results identify a novel mechanism of EV shedding, by which the inhibition of SEC23A by miR-1227 induces a shift in EV shedding, favoring the shedding of large EV over small EV

    Disruption of the MDM2–p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway

    Get PDF
    Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells

    An increased abundance of tumor-infiltrating regulatory t cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma

    Get PDF
    CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8 + T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. Copyright: © 2014 Tang et al

    Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate.

    Get PDF
    The stromal microenvironment has key roles in prostate development and cancer, and cancer-associated fibroblasts (CAFs) stimulate tumourigenesis via several mechanisms including the expression of pro-tumourigenic factors. Mesenchyme (embryonic stroma) controls prostate organogenesis, and in some circumstances can re-differentiate prostate tumours. We have applied next-generation Tag profiling to fetal human prostate, normal human prostate fibroblasts (NPFs) and CAFs to identify molecules expressed in prostatic stroma. Comparison of gene expression profiles of a patient-matched pair of NPFs vs CAFs identified 671 transcripts that were enriched in CAFs and 356 transcripts whose levels were decreased, relative to NPFs. Gene ontology analysis revealed that CAF-enriched transcripts were associated with prostate morphogenesis and CAF-depleted transcripts were associated with cell cycle. We selected mRNAs to follow-up by comparison of our data sets with published prostate cancer fibroblast microarray profiles as well as by focusing on transcripts encoding secreted and peripheral membrane proteins, as well as mesenchymal transcripts identified in a previous study from our group. We confirmed differential transcript expression between CAFs and NPFs using QrtPCR, and defined protein localization using immunohistochemistry in fetal prostate, adult prostate and prostate cancer. We demonstrated that ASPN, CAV1, CFH, CTSK, DCN, FBLN1, FHL1, FN, NKTR, OGN, PARVA, S100A6, SPARC, STC1 and ZEB1 proteins showed specific and varied expression patterns in fetal human prostate and in prostate cancer. Colocalization studies suggested that some stromally expressed molecules were also expressed in subsets of tumour epithelia, indicating that they may be novel markers of EMT. Additionally, two molecules (ASPN and STC1) marked overlapping and distinct subregions of stroma associated with tumour epithelia and may represent new CAF markers

    Modulation of cancer cell growth and progression by Caveolin-1 in the tumor microenvironment

    Get PDF
    Caveolin-1 (Cav-1), a major structural component of cell membrane caveolae, is involved in a variety of intracellular signaling pathways as well as transmembrane transport. Cav-1, as a scaffolding protein, modulates signal transduction associated with cell cycle progression, cellular senescence, cell proliferation and death, lipid homeostasis, etc. Cav-1 is also thought to regulate the expression or activity of oncoproteins, such as Src family kinases, H-Ras, protein kinase C, epidermal growth factor, extracellular signal-regulated kinase, and endothelial nitric oxide synthase. Because of its frequent overexpression or mutation in various tumor tissues and cancer cell lines, Cav-1 has been speculated to play a role as an oncoprotein in cancer development and progression. In contrast, Cav-1 may also function as a tumor suppressor, depending on the type of cancer cells and/or surrounding -stromal cells in the tumor microenvironment as well as the stage of tumors.

    HAMLET Binding to α-Actinin Facilitates Tumor Cell Detachment

    Get PDF
    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed
    corecore