607 research outputs found

    Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback

    Get PDF
    We investigate the dynamics of a semiconductor laser subject to coherent delayed filtered optical feedback. A systematic bifurcation analysis reveals that this system supports two fundamentally different types of oscillations, namely relaxation oscillations and external roundtrip oscillations. Both occur stably in large domains under variation of the feedback conditions, where the feedback phase is identified as a key quantity for controlling this dynamical complexity. We identify two separate parameter regions of stable roundtrip oscillations, which occur throughout in the form of pure frequency oscillations

    Representations through a monoid on the set of fuzzy implications

    Get PDF
    Fuzzy implications are one of the most important fuzzy logic connectives. In this work, we conduct a systematic algebraic study on the set II of all fuzzy implications. To this end, we propose a binary operation, denoted by ⊛, which makes (I,⊛I,⊛) a non-idempotent monoid. While this operation does not give a group structure, we determine the largest subgroup SS of this monoid and using its representation define a group action of SS that partitions II into equivalence classes. Based on these equivalence classes, we obtain a hitherto unknown representations of the two main families of fuzzy implications, viz., the f- and g-implications

    Cathepsin S Signals via PAR2 and Generates a Novel Tethered Ligand Receptor Agonist

    Get PDF
    Protease-activated receptor-2 is widely expressed in mammalian epithelial, immune and neural tissues. Cleavage of PAR2 by serine proteases leads to self-activation of the receptor by the tethered ligand SLIGRL. The contribution of other classes of proteases to PAR activation has not been studied in detail. Cathepsin S is a widely expressed cysteine protease that is upregulated in inflammatory conditions. It has been suggested that cathepsin S activates PAR2. However, cathepsin S activation of PAR2 has not been demonstrated directly nor has the potential mechanism of activation been identified. We show that cathepsin S cleaves near the N-terminus of PAR2 to expose a novel tethered ligand, KVDGTS. The hexapeptide KVDGTS generates downstream signaling events specific to PAR2 but is weaker than SLIGRL. Mutation of the cathepsin S cleavage site prevents receptor activation by the protease while KVDGTS retains activity. In conclusion, the range of actions previously ascribed to cysteine cathepsins in general, and cathepsin S in particular, should be expanded to include molecular signaling. Such signaling may link together observations that had been attributed previously to PAR2 or cathepsin S individually. These interactions may contribute to inflammation

    Inductive algebras and homogeneous shifts

    Full text link
    Inductive algebras for the irreducible unitary representations of the universal cover of the group of unimodular two by two matrices are classified. The classification of homogeneous shift operators is obtained as a direct consequence. This gives a new approach to the results of Bagchi and Misra

    Fine-Needle Aspiration Biopsy of Hepatocellular Carcinoma and Related Hepatocellular Nodular Lesions in Cirrhosis: Controversies, Challenges, and Expectations

    Get PDF
    The role of hepatic fine-needle aspiration (FNA) biopsy has evolved. Advances in imaging modalities have obviated the need for tissue confirmation in most hepatocellular carcinomas (HCCs). There is risk of needle-tract seeding. Increasingly, small nodules are being detected on ultrasound surveillance of high-risk patients. Diagnostic challenges associated with cirrhosis include distinction of benign hepatocellular nodules, namely, large regenerative nodules and dysplastic nodules, from reactive hepatocytes; and distinction of well-differentiated HCCs from benign hepatocellular nodules. This paper will discuss (i) controversies regarding preoperative/pretransplantation FNA diagnosis of HCC, (ii) update of biological evolution, nomenclature, and histopathologic criteria for diagnosis of precancerous nodules and small HCCs, and (iii) algorithmic approach to FNA diagnosis of hepatocellular nodules. Optimal results depend on dedicated radiologist-cytopathologist team, on-site cytology service; combined cytohistologic approach, immunohistochemistry, and clinicopathologic correlation. Hepatic FNA is likely to be incorporated as a point of care as we move towards personalized medicine

    Uncertainty-Aware Organ Classification for Surgical Data Science Applications in Laparoscopy

    Get PDF
    Objective: Surgical data science is evolving into a research field that aims to observe everything occurring within and around the treatment process to provide situation-aware data-driven assistance. In the context of endoscopic video analysis, the accurate classification of organs in the field of view of the camera proffers a technical challenge. Herein, we propose a new approach to anatomical structure classification and image tagging that features an intrinsic measure of confidence to estimate its own performance with high reliability and which can be applied to both RGB and multispectral imaging (MI) data. Methods: Organ recognition is performed using a superpixel classification strategy based on textural and reflectance information. Classification confidence is estimated by analyzing the dispersion of class probabilities. Assessment of the proposed technology is performed through a comprehensive in vivo study with seven pigs. Results: When applied to image tagging, mean accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB) and 96% (MI) with the confidence measure. Conclusion: Results showed that the confidence measure had a significant influence on the classification accuracy, and MI data are better suited for anatomical structure labeling than RGB data. Significance: This work significantly enhances the state of art in automatic labeling of endoscopic videos by introducing the use of the confidence metric, and by being the first study to use MI data for in vivo laparoscopic tissue classification. The data of our experiments will be released as the first in vivo MI dataset upon publication of this paper.Comment: 7 pages, 6 images, 2 table

    Lasing without inversion in three-level systems : self-pulsing in the cascade schemes

    Get PDF
    Lasing without inversion (LWI) in specific models of closed three-level systems is analyzed in terms of nonlinear dynamics. From a linear stability analysis of the trivial nonlasing solution of the homogeneously broadened systems with on-resonance driving and laser fields, we find that, near lasing threshold, resonant closed Λ and V schemes yield continuous-wave LWI while resonant cascade schemes can give rise to self-pulsing LWI. The origin of this different behavior is discussed. For parameters of a real cascade system in atomic 138Ba we check numerically that the self-pulsing solution is stable in a broad range of nonzero detunings. It is shown that the self-pulsing emission can still be observed when the typical residual Doppler broadening of an atomic beam is taken into account
    corecore