148 research outputs found

    Severe axial vertebral rotation treated with a modified Boston brace: a case report

    Get PDF
    We report the case of a 13-year-old Caucasian girl suffering from severe axial rotation of the T5 to L4 vertebrae. The patient (initially examined during a school screening study) was at first considered to be suspicious of suffering from scoliosis due to a highly positive Adam's forward bending test. However, her radiographic evaluation revealed the existence of axial rotation in 12 of her vertebrae, without inclination in the sagittal and coronal planes. After an observation period of 12 months and due to the fact that both her physical appearance and the measured vertebral rotation deteriorated, the patient was given a modified thoracolumbar Boston brace that had an immediate positive derotational effect on all but two vertebrae. Twenty four months later, the progress of the vertebral rotation(s) seems to have been halted and most affected vertebrae appear to be stabilized in their new, 'post-brace', reduced position, with better results shown when the Boston brace is worn. The patient remains under constant medical observation. The application of a modified Boston brace seems to have served well (so far) a useful purpose for reducing and stabilizing this case of severe axial vertebral rotation, providing less deformity and (possibly) offering a better final cosmetic result

    Brace technology thematic series: the dynamic derotation brace

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dynamic derotation brace (DDB) was designed in Greece in 1982, as a modification of the Boston brace. It is a custom-made, underarm spinal orthosis featuring aluminium blades set to produce derotating and anti-rotating effects on the thorax and trunk of patients with scoliosis. It is indicated for the non-operative correction of most curves, barring the very high thoracic ones, (when the apex vertebra is T5 or above). The purpose of this article is to familiarize physicians with the DDB, analyze the rationale behind its design, and present the published results of its application.</p> <p>Description & Principles</p> <p>The key feature of the DDB is the addition of the aluminium-made derotating blades posteriorly. These function as a force couple, which is added to the side forces exerted by the brace itself. Corrective forces are also directed through pads. One or more of previously proposed pathomechanical models of scoliosis may underline the corrective function of the DDB: it may act directly on the apical intervertebral disc, effecting correction through the Heuter-Volkman principle; the blades may produce an anti-rotatory element against the deforming "spiral composite muscle trunk rotator"; or it may alter the neuro-motor response by constantly providing new somatosensory input to the patient.</p> <p>Results</p> <p>Based on measurements of the Cobb and Perdriolle angles, up to 82% of patients remained stable or improved with the use of the DDB. Results have varied, though, depending on the type/location of the deformity. The overall results showed that 35% of the curves improved, 46% remained stable and 18% became worse, as assessed by measuring the Cobb angle. The DDB has also been shown to improve cosmesis (except for right thoracic curves) and leave several aspects of patient quality of life unaffected during use.</p> <p>Conclusion</p> <p>Conservative treatment of idiopathic scoliosis using the DDB has shown favorable results. Thoracic curves appear more resistant to both angular and rotatory correction. The published outcome data on the DDB support our belief that the incorporation of aluminium blades to other orthoses would likely improve their efficacy.</p

    Painful rib hump: a new clinical sign for detecting intraspinal rib displacement in scoliosis due to neurofibromatosis

    Get PDF
    BACKGROUND: Spinal cord compression and associate neurological impairment is rare in patients with scoliosis and neurofibromatosis. Common reasons are vertebral subluxation, dislocation, angulation and tumorous lesions around the spinal canal. Only twelve cases of intraspinal rib dislocation have been reported in the literature. The aim of this report is to present a case of rib penetration through neural foramen at the apex of a scoliotic curve in neurofibromatosis and to introduce a new clinical sign for its detection. METHODS: A 13-year-old girl was evaluated for progressive left thoracic kyphoscoliotic curve due to a type I neurofibromatosis. Clinical examination revealed multiple large thoracic and abdominal "cafe-au-lait" spots, neurological impairment of the lower limbs and the presence of a thoracic gibbous that was painful to pressure at the level of the left eighth rib (Painful Rib Hump). CT-scan showed detachment and translocation of the cephalic end of the left eighth rib into the adjacent enlarged neural foramen. The M.R.I. examination of the spine showed neither cord abnormality nor neurogenic tumor. RESULTS: The patient underwent resection of the intraspinal mobile eighth rib head and posterior spinal instrumentation and was neurologically fully recovered six months postoperatively. CONCLUSION: Spine surgeons should be aware of intraspinal rib displacement in scoliotic curves in neurofibromatosis. Painful rib hump is a valuable diagnostic tool for this rare clinical entity

    Historical overview of spinal deformities in ancient Greece

    Get PDF
    Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years

    Advantages of the Ilizarov external fixation in the management of intra-articular fractures of the distal tibia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of distal tibial intra-articular fractures is challenging due to the difficulties in achieving anatomical reduction of the articular surface and the instability which may occur due to ligamentous and soft tissue injury. The purpose of this study is to present an algorithm in the application of external fixation in the management of intra-articular fractures of the distal tibia either from axial compression or from torsional forces.</p> <p>Materials and methods</p> <p>Thirty two patients with intra-articular fractures of the distal tibia have been studied. Based on the mechanism of injury they were divided into two groups. Group I includes 17 fractures due to axial compression and group II 15 fractures due to torsional force. An Ilizarov external fixation was used in 15 patients (11 of group I and 4 of group II). In 17 cases (6 of group I and 11 of group II) a unilateral hinged external fixator was used. In 7 out of 17 fractures of group I an additional fixation of the fibula was performed.</p> <p>Results</p> <p>All fractures were healed. The mean time of removal of the external fixator was 11 weeks for group I and 10 weeks for group II. In group I, 5 patients had radiological osteoarthritic lesions (grade III and IV) but only 2 were symptomatic. Delayed union occurred in 3 patients of group I with fixed fibula. Other complications included one patient of group II with subluxation of the ankle joint after removal of the hinged external fixator, in 2 patients reduction found to be insufficient during the postoperative follow up and were revised and 6 patients had a residual pain. The range of ankle joint motion was larger in group II.</p> <p>Conclusion</p> <p>Intra-articular fractures of the distal tibia due to axial compression are usually complicated with cartilaginous problems and are requiring anatomical reduction of the articular surface. Fractures due to torsional forces are complicated with ankle instability and reduction should be augmented with ligament repair, in order to restore normal movement of talus against the mortise. Both Ilizarov and hinged external fixators are unable to restore ligamentous stability. External fixation is recommended only for fractures of the ankle joint caused by axial compression because it is biomechanically superior and has a lower complication rate.</p

    A segmental radiological study of the spine and rib – cage in children with progressive Infantile Idiopathic Scoliosis

    Get PDF
    BACKGROUND: The role of rib cage in the development of progressive infantile idiopathic scoliosis (IIS) has not been studied previously. No report was found for rib growth in children with IIS. These findings caused us to undertake a segmental radiological study of the spine and rib-cage in children with progressive IIS. The aim of the present study is to present a new method for assessing the thoracic shape in scoliotics and in control subjects and to compare the findings between the two groups. MATERIALS AND METHODS: In the posteroanterior (PA) spinal radiographs of 24 patients with progressive IIS, with a mean age of 4.1 years old, the Thoracic Ratios (TRs) (segmental convex and concave TRs), the Cobb angle, the segmental vertebral rotation and vertebral tilt were measured. In 233 subjects, with a mean age of 5.1 years old, who were used as a control group, the segmental left and right TRs and the total width of the chest (left plus right TRs) were measured in PA chest radiographs. Statistical analysis included Mann-Whitney, Spearman correlation coefficient, multiple linear regression analysis and ANOVA. RESULTS: The comparison shows that the scoliotic thorax is significantly narrower than that of the controls at all spinal levels. The upper chest in IIS is funnel-shaped and the vertebral rotation at T4 early in management correlates significantly with the apical vertebral rotation at follow up. CONCLUSION: The IIS thorax is narrower than that of the controls, the upper chest is funnel-shaped and there is a predictive value of vertebral rotation at the upper limit of the thoracic curve of IIS, which reflects, impaired rib control of spinal rotation possibly due to neuromuscular factors, which contribute also to the funnel-shaped chest

    The effect of growth on the correlation between the spinal and rib cage deformity: implications on idiopathic scoliosis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have attempted to quantify the correlation between the surface deformity and the Cobb angle without considering growth as an important factor that may influence this correlation. In our series, we noticed that in some younger referred children from the school-screening program there is a discrepancy between the thoracic scoliometer readings and the morphology of their spine. Namely there is a rib hump but no spinal curve and consequently no Cobb angle reading in radiographs, discrepancy which fades away in older children. Based on this observation, we hypothesized that in scoliotics the correlation between the rib cage deformity and this of the spine is weak in younger children and vice versa.</p> <p>Methods</p> <p>Eighty three girls referred on the basis of their hump reading on the scoliometer, with a mean age of 13.4 years old (range 7–18), were included in the study. The spinal deformity was assessed by measuring the thoracic Cobb angle from the postero-anterior spinal radiographs. The rib cage deformity was quantified by measuring the rib-index at the apex of the thoracic curve from the lateral spinal radiographs. The rib-index is defined as the ratio between the distance of the posterior margin of the vertebral body and the most extended point of the most projecting rib contour, divided by the distance between the posterior margin of the same vertebral body and the most protruding point of the least projecting rib contour. Statistical analysis included linear regression models with and without the effect of the variable age. We divided our sample in two subgroups, namely the younger (7–13 years old) and the older (14–18 years old) than the mean age participants. A univariate linear regression analysis was performed for each age group in order to assess the effect of age on Cobb angle and rib index correlation.</p> <p>Results</p> <p>Twenty five per cent of patients with an ATI more than or equal 7 degrees had a spinal curve under 10 degrees or had a straight spine. Linear regressions between the dependent variable "Thoracic Cobb angle" with the independent variable "rib-index" without the effect of the variable "age" is not statistical significant. After sample split, the linear relationship is statistically significant in the age group 14–18 years old (p < 0.03).</p> <p>Conclusion</p> <p>Growth has a significant effect in the correlation between the thoracic and the spinal deformity in girls with idiopathic scoliosis. Therefore it should be taken into consideration when trying to assess the spinal deformity from surface measurements. The findings of the present study implicate the role of the thorax, as it shows that the rib cage deformity precedes the spinal deformity in the pathogenesis of idiopathic scoliosis.</p

    Study of trunk asymmetry in normal children and adolescents

    Get PDF
    The scoliometer readings in both standing and sitting position of 2071 children and adolescents (1099 boys and 972 girls) aged from 5 to 18 years old were studied. The angle of trunk rotation (ATR) was measured, in order to quantify the existing trunk asymmetry. Children and adolescents were divided in two groups according to the severity of trunk asymmetry. In the first group asymmetry was 1 to 6 degrees and in the second group was 7 or more degrees. Radiographic and leg length inequality evaluation were also performed in a number of children. The mean frequency of symmetric (ATR = 0 degrees) boys and girls was 67.06% and 65.01% for the standing screening position and 76.5% and 75.1% for the sitting position, respectively. The mean difference of frequency of asymmetry (ATR > 0 degrees) at standing minus sitting forward bending position for boys and girls was 10.22% and 9.37%, respectively. The mean frequency of asymmetry of 7 or more degrees was 3.23% for boys and 3.92% for girls at the standing forward bending position and 1.62% and 2.21% at the sitting, respectively. Girls are found to express higher frequency of asymmetry than boys. Right trunk asymmetry was more common than left. The sitting position is the preferred screening position for examining the rib or loin hump during school screening as it demonstrates the best correlation with the spinal deformity exposing the real trunk asymmetry
    corecore