456 research outputs found

    Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Get PDF
    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.Comment: 11 pages, 2 figures. Submitted to JCA

    Quantified Morphology of HI Disks in the Universe

    Get PDF
    he upcoming new perspective of the high redshift Universe in the 21 cm line of atomic hydrogen opens possibilities to explore topics of spiral disk evolution, hitherto reserved for the optical regime. The growth of spiral gas disks over Cosmic time can be explored with the new generation of radio telescopes, notably the SKA, and its precursors, as accurately as with the Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the building block of these disks, it should trace their formation accurately. Morphology of HI disks can now equally be quantified over Cosmic time. In studies of HST deep fields, the optical or UV morphology of high-redshift galaxy disks have been characterized using a few quantities: concentration (C), asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient (G), and Ellipticity (E). We have applied these parameters across wavelengths and compared them to the HI morphology over the THINGS sample. NGC 3184, an unperturbed disk, and NGC 5194, the canonical 3:1 interaction, serve as examples for quantified morphology. We find that morphology parameters determined in HI are as good or better a tracer of interaction compared to those in any other wavelength, notably in Asymmetry, Gini and M20. This opens the possibility of using them in the parameterization pipeline for SKA precursor catalogues to select interacting or harassed galaxies from their HI morphology. Asymmetry, Gini and M20 may be redefined for use on data-cubes rather than HI column density image.Comment: 6 pages, 3 figures, proceeding of the conference "Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution", June 02 - 05 2009, Groningen, update after small edit

    A New Approach to the Optimal Target Selection Problem

    Get PDF
    Optimally selecting a subset of targets from a larger catalog is a common problem in astronomy and cosmology. A specific example is the selection of targets from an imaging survey for multi-object spectrographic follow-up. We present a new heuristic algorithm, HYBRID, for this purpose and undertake detailed studies of its performance. HYBRID combines elements of the simulated annealing, MCMC and particle-swarm methods and is particularly successful in cases where the survey landscape has multiple curvature or clustering scales. HYBRID consistently outperforms the other methods, especially in high-dimensionality spaces with many extrema. This means many fewer simulations must be run to reach a given performance confidence level and implies very significant advantages in solving complex or computationally expensive optimisation problems.Comment: 10 pages, 14 figures, Extended version accepted to Astron. Astrophy

    Quantified HI Morphology II : Lopsidedness and Interaction in WHISP Column Density Maps

    Get PDF
    Lopsidedness of the gaseous disk of spiral galaxies is a common phenomenon in disk morphology, profile and kinematics. Simultaneously, the asymmetry of a galaxy's stellar disk, in combination with other morphological parameters, has seen extensive use as an indication of recent merger or interaction in galaxy samples. Quantified morphology of stellar spiral disks is one avenue to determine the merger rate over much of the age of the Universe. In this paper, we measure the quantitative morphology parameters for the HI column density maps from the Westerbork observations of neutral Hydrogen in Irregular and SPiral galaxies (WHISP). These are Concentration, Asymmetry, Smoothness, Gini, M20, and one addition of our own, the Gini parameter of the second order moment (GM). Our aim is to determine if lopsided or interacting disks can be identified with these parameters. Our sample of 141 HI maps have all previous classifications on their lopsidedness and interaction. We find that the Asymmetry, M20, and our new GM parameter correlate only weakly with the previous morphological lopsidedness quantification. These three parameters may be used to compute a probability that an HI disk is morphologically lopsided but not unequivocally to determine it. However, we do find that that the question whether or not an HI disk is interacting can be settled well using morphological parameters. Parameter cuts from the literature do not translate from ultraviolet to HI directly but new selection criteria using combinations of Asymmetry and M20 or Concentration and M20, work very well. We suggest that future all-sky HI surveys may use these parameters of the column density maps to determine the merger fraction and hence rate in the local Universe with a high degree of accuracy.Comment: 12 pages, 5 figures, 1 table, accepted by MNRAS, appendix not include

    Cytoskeleton’s Role in KIR2.1 Trafficking

    Get PDF
    Alteration of the inward rectifier current IK1, carried by KIR2.1 channels, affects action potential duration, impacts resting membrane stability and associates with cardiac arrhythmias. Congenital and acquired KIR2.1 malfunction frequently associates with aberrant ion channel trafficking. Cellular processes underlying trafficking are intertwined with cytoskeletal function. The extent to which the cytoskeleton is involved in KIR2.1 trafficking processes is unknown. We aimed to quantify the dependence of KIR2.1 trafficking on cytoskeleton function. GFP or photoconvertible Dendra2 tagged KIR2.1 constructs were transfected in HEK293 or HeLa cells. Photoconversion of the Dendra2 probe at the plasma membrane and subsequent live imaging of trafficking processes was performed by confocal laser-scanning microscopy. Time constant of green fluorescent recovery (τg,s) represented recruitment of new KIR2.1 at the plasma membrane. Red fluorescent decay (τr,s) represented internalization of photoconverted KIR2.1. Patch clamp electrophysiology was used to quantify IKIR2.1. Biochemical methods were used for cytoskeleton isolation and detection of KIR2.1 cytoskeleton interactions. Cytochalasin B (20 μM), Nocodazole (30 μM) and Dyngo-4a (10 nM) were used to modify the cytoskeleton. Chloroquine (10 μM, 24 h) was used to impair KIR2.1 breakdown. Cytochalasin B and Nocodazole, inhibitors of actin and tubulin filament formation respectively, strongly inhibited the recovery of green fluorescence at the plasma membrane suggestive for inhibition of KIR2.1 forward trafficking [τg,s 13 ± 2 vs. 131 ± 31* and 160 ± 40* min, for control, Cytochalasin B and Nocodazole, respectively (*p < 0.05 vs. control)]. Dyngo-4a, an inhibitor of dynamin motor proteins, strongly slowed the rate of photoconverted channel internalization, whereas Nocodazole and Cytochalasin B had less effect [τr,s 20 ± 2 vs. 87 ± 14*, 60 ± 16 and 64 ± 20 min (*p < 0.05 vs. control)]. Cytochalasin B treatment (20 μM, 24 h) inhibited IKIR2.1. Chloroquine treatment (10 μM, 24 h) induced intracellular aggregation of KIR2.1 channels and enhanced interaction with the actin/intermediate filament system (103 ± 90 fold; p < 0.05 vs. control). Functional actin and tubulin cytoskeleton systems are essential for forward trafficking of KIR2.1 channels, whereas initial backward trafficking relies on a functional dynamin system. Chronic disturbance of the actin system inhibits KIR2.1 currents. Internalized KIR2.1 channels become recruited to the cytoskeleton, presumably in lysosomes

    A spectroscopic analysis of the eclipsing nova-like EC 21178−5417 – discovery of spiral density structures

    Get PDF
    We present phase-resolved optical spectroscopy of the eclipsing nova-like cataclysmic variable EC 21178−5417 obtained between 2002 and 2013. The average spectrum of EC 21178−5417 shows broad double-peaked emission lines from He II 4686 Å (strongest feature) and the Balmer series. The high-excitation feature, C III/N III at 4640–4650 Å, is also present and appears broad in emission. A number of other lines, mostly He I, are clearly present in absorption and/or emission

    Quantitative Analysis of the Cytoskeleton's Role in Inward Rectifier K IR 2.1 Forward and Backward Trafficking

    Get PDF
    Alteration of the inward rectifier current I K1, carried by K IR2.1 channels, affects action potential duration, impacts resting membrane stability and associates with cardiac arrhythmias. Congenital and acquired K IR2.1 malfunction frequently associates with aberrant ion channel trafficking. Cellular processes underlying trafficking are intertwined with cytoskeletal function. The extent to which the cytoskeleton is involved in K IR2.1 trafficking processes is unknown. We aimed to quantify the dependence of K IR2.1 trafficking on cytoskeleton function. GFP or photoconvertible Dendra2 tagged K IR2.1 constructs were transfected in HEK293 or HeLa cells. Photoconversion of the Dendra2 probe at the plasma membrane and subsequent live imaging of trafficking processes was performed by confocal laser-scanning microscopy. Time constant of green fluorescent recovery (τg,s) represented recruitment of new K IR2.1 at the plasma membrane. Red fluorescent decay (τr,s) represented internalization of photoconverted K IR2.1. Patch clamp electrophysiology was used to quantify I KIR2. 1. Biochemical methods were used for cytoskeleton isolation and detection of K IR2.1-cytoskeleton interactions. Cytochalasin B (20 μM), Nocodazole (30 μM) and Dyngo-4a (10 nM) were used to modify the cytoskeleton. Chloroquine (10 μM, 24 h) was used to impair K IR2.1 breakdown. Cytochalasin B and Nocodazole, inhibitors of actin and tubulin filament formation respectively, strongly inhibited the recovery of green fluorescence at the plasma membrane suggestive for inhibition of K IR2.1 forward trafficking [τg,s 13 ± 2 vs. 131 ± 31* and 160 ± 40* min, for control, Cytochalasin B and Nocodazole, respectively (*p < 0.05 vs. control)]. Dyngo-4a, an inhibitor of dynamin motor proteins, strongly slowed the rate of photoconverted channel internalization, whereas Nocodazole and Cytochalasin B had less effect [τr,s 20 ± 2 vs. 87 ± 14*, 60 ± 16 and 64 ± 20 min (*p < 0.05 vs. control)]. Cytochalasin B treatment (20 μM, 24 h) inhibited I KIR2. 1. Chloroquine treatment (10 μM, 24 h) induced intracellular aggregation of K IR2.1 channels and enhanced interaction with the actin/intermediate filament system (103 ± 90 fold; p < 0.05 vs. control). Functional actin and tubulin cytoskeleton systems are essential for forward trafficking of K IR2.1 channels, whereas initial backward trafficking relies on a functional dynamin system. Chronic disturbance of the actin system inhibits K IR2.1 currents. Internalized K IR2.1 channels become recruited to the cytoskeleton, presumably in lysosomes

    Quantified HI Morphology III: Merger Visibility Times from HI in Galaxy Simulations

    Get PDF
    Major mergers of disk galaxies are thought to be a substantial driver in galaxy evolution. To trace the fraction and the rate galaxies are in mergers over cosmic times, several observational techniques, including morphological selection criteria, have been developed over the last decade. We apply this morphological selection of mergers to 21 cm radio emission line (HI) column density images of spiral galaxies in nearby surveys. In this paper, we investigate how long a 1:1 merger is visible in HI from N-body simulations. We evaluate the merger visibility times for selection criteria based on four parameters: Concentration, Asymmetry, M20, and the Gini parameter of second order moment of the flux distribution (GM). Of three selection criteria used in the literature, one based on Concentration and M20 works well for the HI perspective with a merger time scale of 0.4 Gyr. Of the three selection criteria defined in our previous paper, the GM performs well and cleanly selects mergers for 0.69 Gyr. The other two criteria (A-M20 and C-M20), select isolated disks as well, but perform best for face-on, gas-rich disks (T(merger) ~ 1 Gyr). The different visibility scales can be combined with the selected fractions of galaxies in any large HI survey to obtain merger rates in the nearby Universe. All-sky surveys such as WALLABY with ASKAP and the Medium Deep Survey with the APETIF instrument on Westerbork are set to revolutionize our perspective on neutral hydrogen and will provide an accurate measure of the merger fraction and rate of the present epoch.Comment: 12 pages, 6 figures, 4 tables, accepted by MNRAS, appendix not include

    The [OIII] profiles of far-infrared active and non-active optically-selected green valley galaxies

    Get PDF
    We present a study of the [OIII]λ 5007\rm{[OIII]\lambda\,5007} line profile in a sub-sample of 8 active galactic nuclei (AGN) and 6 non-AGN in the optically-selected green valley at z < 0.5\rm{z\,<\,0.5} using long-slit spectroscopic observations with the 11 m Southern African Large Telescope. Gaussian decomposition of the line profile was performed to study its different components. We observe that the AGN profile is more complex than the non-AGN one. In particular, in most AGN (5/8) we detect a blue wing of the line. We derive the FWHM velocities of the wing and systemic component, and find that AGN show higher FWHM velocity than non-AGN in their core component. We also find that the AGN show blue wings with a median velocity width of approximately 600 km s−1\rm{km\,s^{-1}}, and a velocity offset from the core component in the range -90 to -350 km s−1\rm{km\,s^{-1}}, in contrast to the non-AGN galaxies, where we do not detect blue wings in any of their [OIII]λ 5007\rm{[OIII]\lambda\,5007} line profiles. Using spatial information in our spectra, we show that at least three of the outflow candidate galaxies have centrally driven gas outflows extending across the whole galaxy. Moreover, these are also the galaxies which are located on the main sequence of star formation, raising the possibility that the AGN in our sample are influencing SF of their host galaxies (such as positive feedback). This is in agreement with our previous work where we studied SF, morphology, and stellar population properties of a sample of green valley AGN and non-AGN galaxies.Comment: 15 pages, 6 figures, accepted for publication in Ap

    Review of Case Reports on Adverse Events Related to Pre-workout Supplements Containing Synephrine

    Get PDF
    The use of pre-workout supplements has become increasingly popular, including the use of supplements containing synephrine. Synephrine might stimulate weight loss and improve sports performance by its proposed adrenergic properties. However, with its increasing popularity, numerous cases of adverse events related to synephrine use have been reported. This study provides a comprehensive overview and analysis of current case reports related to the supplemental use of synephrine. The scientific literature on cases of adverse events related to synephrine intake was collected through August 2021 using Pubmed and Google Scholar and subsequently reviewed and analysed. We obtained 30 case reports describing a total of 35 patients who suffered from medical complaints following use of synephrine-containing supplements. The patients most often presented with chest pain, palpitations, syncope and dizziness. Commonly raised diagnoses were ischaemic heart disease, cardiac arrhythmias and cerebrovascular disease. Five patients were left disabled or remained on medication at last follow-up. We here show an association between the use of pre-workout supplements containing synephrine and adverse events, mainly related to the cardiovascular system. However, we cannot exclude a role of possible confounding factors such as caffeine. Thus, the use of pre-workout supplements containing synephrine may lead to serious adverse health events, and therefore, caution is needed
    • …
    corecore