53 research outputs found
Aniline incorporated silica nanobubbles
We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline
molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted
emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution,
precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of
gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective
removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The
material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and
voltammetric properties of the system were studied in order to understand the interaction of aniline with
the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the
silica shell
Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach
This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties
- …