488 research outputs found
Fractal properties of relaxation clusters and phase transition in a stochastic sandpile automaton
We study numerically the spatial properties of relaxation clusters in a two
dimensional sandpile automaton with dynamic rules depending stochastically on a
parameter p, which models the effects of static friction. In the limiting cases
p=1 and p=0 the model reduces to the critical height model and critical slope
model, respectively. At p=p_c, a continuous phase transition occurs to the
state characterized by a nonzero average slope. Our analysis reveals that the
loss of finite average slope at the transition is accompanied by the loss of
fractal properties of the relaxation clusters.Comment: 11 page
Field Theory of Mesoscopic Fluctuations in Superconductor/Normal-Metal Systems
Thermodynamic and transport properties of normal disordered conductors are
strongly influenced by the proximity of a superconductor. A cooperation between
mesoscopic coherence and Andreev scattering of particles from the
superconductor generates new types of interference phenomena. We introduce a
field theoretic approach capable of exploring both averaged properties and
mesoscopic fluctuations of superconductor/normal-metal systems.
As an example the method is applied to the study of the level statistics of a
SNS-junction.Comment: 4 pages, REVTEX, two eps-figures included; submitted to JETP letter
Proximity-induced superconductivity in graphene
We propose a way of making graphene superconductive by putting on it small
superconductive islands which cover a tiny fraction of graphene area. We show
that the critical temperature, T_c, can reach several Kelvins at the
experimentally accessible range of parameters. At low temperatures, T<<T_c, and
zero magnetic field, the density of states is characterized by a small gap
E_g<T_c resulting from the collective proximity effect. Transverse magnetic
field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer
to a kind of a superconductive glass state. Melting of the glass state into a
metal occurs at a higher field H_{g2}(T).Comment: 4 pages, 3 figure
Gap Fluctuations in Inhomogeneous Superconductors
Spatial fluctuations of the effective pairing interaction between electrons
in a superconductor induce variations of the order parameter which in turn lead
to significant changes in the density of states. In addition to an overall
reduction of the quasi-particle energy gap, theory suggests that mesoscopic
fluctuations of the impurity potential induce localised tail states below the
mean-field gap edge. Using a field theoretic approach, we elucidate the nature
of the states in the `sub-gap' region. Specifically, we show that these states
are associated with replica symmetry broken instanton solutions of the
mean-field equations.Comment: 11 pages, 3 figures included. To be published in PRB (Sept. 2001
Critical behavior of a traffic flow model
The Nagel-Schreckenberg traffic flow model shows a transition from a free
flow regime to a jammed regime for increasing car density. The measurement of
the dynamical structure factor offers the chance to observe the evolution of
jams without the necessity to define a car to be jammed or not. Above the
jamming transition the dynamical structure factor exhibits for a given k-value
two maxima corresponding to the separation of the system into the free flow
phase and jammed phase. We obtain from a finite-size scaling analysis of the
smallest jam mode that approaching the transition long range correlations of
the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review
Reorientation transition of ultrathin ferromagnetic films
We demonstrate that the reorientation transition from out-of-plane to
in-plane magnetization with decreasing temperature as observed experimentally
in Ni-films on Cu(001) can be explained on a microscopic basis. Using a
combination of mean field theory and perturbation theory, we derive an analytic
expression for the temperature dependent anisotropy. The reduced magnetization
in the film surface at finite temperatures plays a crucial role for this
transition as with increasing temperature the influence of the uniaxial
anisotropies is reduced at the surface and is enhanced inside the film.Comment: 4 pages(RevTeX), 3 figures (EPS
Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems
Andreev bound states in clean, ballistic SNS and SNSNS junctions are
calculated exactly and by using the Andreev approximation (AA). The AA appears
to break down for junctions with transverse dimensions chosen such that the
motion in the longitudinal direction is very slow. The doubly degenerate states
typical for the traveling waves found in the AA are replaced by two standing
waves in the exact treatment and the degeneracy is lifted.
A multiple-scattering Green's function formalism is used, from which the
states are found through the local density of states. The scattering by the
interfaces in any layered system of ballistic normal metals and clean
superconducting materials is taken into account exactly. The formalism allows,
in addition, for a self-consistent determination of the gap function. In the
numerical calculations the pairing coupling constant for aluminum is used.
Various features of the proximity effect are shown
Full Current Statistics in Diffusive Normal-Superconductor Structures
We study the current statistics in normal diffusive conductors in contact
with a superconductor. Using an extension of the Keldysh Green's function
method we are able to find the full distribution of charge transfers for all
temperatures and voltages. For the non-Gaussian regime, we show that the
equilibrium current fluctuations are enhanced by the presence of the
superconductor. We predict an enhancement of the nonequilibrium current noise
for temperatures below and voltages of the order of the Thouless energy
E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the
normal metal and agrees with experimental data. We demonstrate that the
calculation of the full current statistics is in fact simpler than a concrete
calculation of the noise.Comment: 4 pages, 2 figures (included
Depinning transition and thermal fluctuations in the random-field Ising model
We analyze the depinning transition of a driven interface in the 3d
random-field Ising model (RFIM) with quenched disorder by means of Monte Carlo
simulations. The interface initially built into the system is perpendicular to
the [111]-direction of a simple cubic lattice. We introduce an algorithm which
is capable of simulating such an interface independent of the considered
dimension and time scale. This algorithm is applied to the 3d-RFIM to study
both the depinning transition and the influence of thermal fluctuations on this
transition. It turns out that in the RFIM characteristics of the depinning
transition depend crucially on the existence of overhangs. Our analysis yields
critical exponents of the interface velocity, the correlation length, and the
thermal rounding of the transition. We find numerical evidence for a scaling
relation for these exponents and the dimension d of the system.Comment: 6 pages, including 9 figures, submitted for publicatio
Anisotropy of ultra-thin ferromagnetic films and the spin reorientation transition
The influence of uniaxial anisotropy and the dipole interaction on the
direction of the magnetization of ultra-thin ferromagnetic films in the
ground-state is studied. The ground-state energy can be expressed in terms of
anisotropy constants which are calculated in detail as function of the system
parameters and the film thickness. In particular non-collinear spin
arrangements are taken into account. Conditions for the appearance of a spin
reorientation transition are given and analytic results for the width of the
canted phase and its shift in applied magnetic fields associated with this
transition are derived.Comment: 6 pages, RevTeX
- …
