495 research outputs found

    Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar

    Get PDF
    The compositional dependence of H2O solubility was investigated at 2 kbar and 800°C in haplogranite melts (system SiO2---1bNaAlSi3O8---1bKAlSi3O8 or Qz---1bAb---1bOr). The sixteen investigated compositions contained 25, 35 or 45 wt.% normative Qz and various Ab/(Ab+Or) ratios (0.15–0.92). Starting solid materials were anhydrous bubble-free glasses to which 10 wt.% H2O was added. The H2O contents of the isobarically quenched melts (glasses) were measured by Karl-Fischer titration. The results show that H2O solubility in aluminosilicate melts depends significantly upon anhydrous composition. The highest solubility values are obtained for the most Ab-rich melts. At a constant normative quartz content, the solubility of water decreases from 6.49 ± 0.20 wt.% H2O for a composition Qz35Ab60Or05 (normative composition expressed in wt.%) to 5.50 ± 0.15 wt.% H2O for a composition Qz35Ab10Or55. Along this join, the most significant changes are observed for Ab-rich melts whereas H2O solubility in Or-rich melts remains almost constant. The H2O solubility data imply that H2O is preferentially associated with the Ab component in aluminosilicate melts. Application of the results to natural granitic melts suggests that Na-rich, H2O-saturated melts may be significantly less viscous than H2O-saturated, K-rich melts. The temperature dependence of H2O solubility, investigated for composition Qz28Ab38Or34 at 2 kbar, is low. Increasing temperature from 750° to 1150°C only causes a decrease in H2O solubility from 6.00 to 5.41 wt.% H2O. These data are in agreement with previous data obtained for albite melts

    High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138266/1/ajp22684.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138266/2/ajp22684_am.pd

    Removal of imidacloprid using activated carbon produced from ricinodendron heudelotii shells

    Get PDF
    In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that the prepared activated carbon has a microstructure and a higher specific surface area (1179 m2/g), suggesting that the acid treatment has a significant positive influence on its sorption properties. The maximum adsorption capacity and pollutant elimination efficiency are found to be 43.48 mg/g and 90%, respectively. These results suggest that this low cost agent is an efficient tool to remove organic pollutants especially imidacloprid from wastewater

    The dependency pair framework: Combining techniques for automated termination proofs

    Get PDF
    Abstract. The dependency pair approach is one of the most powerful techniques for automated termination proofs of term rewrite systems. Up to now, it was regarded as one of several possible methods to prove termination. In this paper, we show that dependency pairs can instead be used as a general concept to integrate arbitrary techniques for termination analysis. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. We refer to this new concept as the “dependency pair framework ” to distinguish it from the old “dependency pair approach”. Moreover, this framework facilitates the development of new methods for termination analysis. To demonstrate this, we present several new techniques within the dependency pair framework which simplify termination problems considerably. We implemented the dependency pair framework in our termination prover AProVE and evaluated it on large collections of examples.

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    Assignment of resonances in dissociative recombination of HD+ ions: high-resolution measurements compared with accurate computations

    Full text link
    The collision-energy resolved rate coefficient for dissociative recombination of HD+ ions in the vibrational ground state is measured using the photocathode electron target at the heavy-ion storage ring TSR. Rydberg resonances associated with ro-vibrational excitation of the HD+ core are scanned as a function of the electron collision energy with an instrumental broadening below 1 meV in the low-energy limit. The measurement is compared to calculations using multichannel quantum defect theory, accounting for rotational structure and interactions and considering the six lowest rotational energy levels as initial ionic states. Using thermal equilibrium level populations at 300 K to approximate the experimental conditions, close correspondence between calculated and measured structures is found up to the first vibrational excitation threshold of the cations near 0.24 eV. Detailed assignments, including naturally broadened and overlapping Rydberg resonances, are performed for all structures up to 0.024 eV. Resonances from purely rotational excitation of the ion core are found to have similar strengths as those involving vibrational excitation. A dominant low-energy resonance is assigned to contributions from excited rotational states only. The results indicate strong modifications in the energy dependence of the dissociative recombination rate coefficient through the rotational excitation of the parent ions, and underline the need for studies with rotationally cold species to obtain results reflecting low-temperature ionized media.Comment: 15 pages, 10 figures. Paper to appear in Phys. Rev. A (version as accepted

    Guiding principles on the education and practice of theranostics.

    Get PDF
    The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics
    corecore