898 research outputs found
Fractal Dimensions of Confined Clusters in Two-Dimensional Directed Percolation
The fractal structure of directed percolation clusters, grown at the
percolation threshold inside parabolic-like systems, is studied in two
dimensions via Monte Carlo simulations. With a free surface at y=\pm Cx^k and a
dynamical exponent z, the surface shape is a relevant perturbation when k<1/z
and the fractal dimensions of the anisotropic clusters vary continuously with
k. Analytic expressions for these variations are obtained using a blob picture
approach.Comment: 6 pages, Plain TeX file, epsf, 3 postscript-figure
Surface Shape and Local Critical Behaviour in Two-Dimensional Directed Percolation
Two-dimensional directed site percolation is studied in systems directed
along the x-axis and limited by a free surface at y=\pm Cx^k. Scaling
considerations show that the surface is a relevant perturbation to the local
critical behaviour when k<1/z where z=\nu_\parallel/\nu is the dynamical
exponent. The tip-to-bulk order parameter correlation function is calculated in
the mean-field approximation. The tip percolation probability and the fractal
dimensions of critical clusters are obtained through Monte-Carlo simulations.
The tip order parameter has a nonuniversal, C-dependent, scaling dimension in
the marginal case, k=1/z, and displays a stretched exponential behaviour when
the perturbation is relevant. The k-dependence of the fractal dimensions in the
relevant case is in agreement with the results of a blob picture approach.Comment: 13 pages, Plain TeX file, epsf, 6 postscript-figures, minor
correction
Extended surface disorder in the quantum Ising chain
We consider random extended surface perturbations in the transverse field
Ising model decaying as a power of the distance from the surface towards a pure
bulk system. The decay may be linked either to the evolution of the couplings
or to their probabilities. Using scaling arguments, we develop a
relevance-irrelevance criterion for such perturbations. We study the
probability distribution of the surface magnetization, its average and typical
critical behaviour for marginal and relevant perturbations. According to
analytical results, the surface magnetization follows a log-normal distribution
and both the average and typical critical behaviours are characterized by
power-law singularities with continuously varying exponents in the marginal
case and essential singularities in the relevant case. For enhanced average
local couplings, the transition becomes first order with a nonvanishing
critical surface magnetization. This occurs above a positive threshold value of
the perturbation amplitude in the marginal case.Comment: 15 pages, 10 figures, Plain TeX. J. Phys. A (accepted
Conformal off-diagonal boundary density profiles on a semi-infinite strip
The off-diagonal profile phi(v) associated with a local operator (order
parameter or energy density) close to the boundary of a semi-infinite strip
with width L is obtained at criticality using conformal methods. It involves
the surface exponent x_phi^s and displays a simple universal behaviour which
crosses over from surface finite-size scaling when v/L is held constant to
corner finite-size scaling when v/L -> 0.Comment: 5 pages, 1 figure, IOP macros and eps
Nonequilibrium phase transition in a driven Potts model with friction
We consider magnetic friction between two systems of -state Potts spins
which are moving along their boundaries with a relative constant velocity .
Due to the interaction between the surface spins there is a permanent energy
flow and the system is in a steady state which is far from equilibrium. The
problem is treated analytically in the limit (in one dimension, as
well as in two dimensions for large- values) and for and finite by
Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase
transitions take place, the properties of which depend on the type of phase
transition in equilibrium. When this latter transition is of first order, a
sequence of second- and first-order nonequilibrium transitions can be observed
when the interaction is varied.Comment: 13 pages, 9 figures, one journal reference adde
Remarks on Duality Transformations and Generalized Stabilizer States
We consider the transformation of Hamilton operators under various sets of
quantum operations acting simultaneously on all adjacent pairs of particles. We
find mappings between Hamilton operators analogous to duality transformations
as well as exact characterizations of ground states employing non-Hermitean
eigenvalue equations and use this to motivate a generalization of the
stabilizer formalism to non-Hermitean operators. The resulting class of states
is larger than that of standard stabilizer states and allows for example for
continuous variation of local entropies rather than the discrete values taken
on stabilizer states and the exact description of certain ground states of
Hamilton operators.Comment: Contribution to Special Issue in Journal of Modern Optics celebrating
the 60th birthday of Peter Knigh
Critical behaviour near multiple junctions and dirty surfaces in the two-dimensional Ising model
We consider m two-dimensional semi-infinite planes of Ising spins joined
together through surface spins and study the critical behaviour near to the
junction. The m=0 limit of the model - according to the replica trick -
corresponds to the semi-infinite Ising model in the presence of a random
surface field (RSFI). Using conformal mapping, second-order perturbation
expansion around the weakly- and strongly-coupled planes limits and
differential renormalization group, we show that the surface critical behaviour
of the RSFI model is described by Ising critical exponents with logarithmic
corrections to scaling, while at multiple junctions (m>2) the transition is
first order. There is a spontaneous junction magnetization at the bulk critical
point.Comment: Old paper, for archiving. 6 pages, 1 figure, IOP macro, eps
Conformal invariance and linear defects in the two-dimensional Ising model
Using conformal invariance, we show that the non-universal exponent eta_0
associated with the decay of correlations along a defect line of modified bonds
in the square-lattice Ising model is related to the amplitude A_0=xi_n/n of the
correlation length \xi_n(K_c) at the bulk critical coupling K_c, on a strip
with width n, periodic boundary conditions and two equidistant defect lines
along the strip, through A_0=(\pi\eta_0)^{-1}.Comment: Old paper, for archiving. 5 pages, 4 figures, IOP macro, eps
Anomalous Diffusion in Aperiodic Environments
We study the Brownian motion of a classical particle in one-dimensional
inhomogeneous environments where the transition probabilities follow
quasiperiodic or aperiodic distributions. Exploiting an exact correspondence
with the transverse-field Ising model with inhomogeneous couplings we obtain
many new analytical results for the random walk problem. In the absence of
global bias the qualitative behavior of the diffusive motion of the particle
and the corresponding persistence probability strongly depend on the
fluctuation properties of the environment. In environments with bounded
fluctuations the particle shows normal diffusive motion and the diffusion
constant is simply related to the persistence probability. On the other hand in
a medium with unbounded fluctuations the diffusion is ultra-slow, the
displacement of the particle grows on logarithmic time scales. For the
borderline situation with marginal fluctuations both the diffusion exponent and
the persistence exponent are continuously varying functions of the
aperiodicity. Extensions of the results to disordered media and to higher
dimensions are also discussed.Comment: 11 pages, RevTe
Chaos in the Z(2) Gauge Model on a Generalized Bethe Lattice of Plaquettes
We investigate the Z(2) gauge model on a generalized Bethe lattice with three
plaquette representation of the action. We obtain the cascade of phase
transitions according to Feigenbaum scheme leading to chaotic states for some
values of parameters of the model. The duality between this gauge model and
three site Ising spin model on Husimi tree is shown. The Lyapunov exponent as a
new order parameter for the characterization of the model in the chaotic region
is considered. The line of the second order phase transition, which corresponds
to the points of the first period doubling bifurcation, is also obtained.Comment: LaTeX, 7 pages, 4 Postscript figure
- …
