6,896 research outputs found

    Explaining Sales Pay Strategy Using Agency, Transaction Cost and Resource Dependence Theories

    Get PDF
    The purpose of this study was to investigate, using data gathered from 325 French-Canadian organizations, the influence of key constructs related to agency, transaction cost and resource dependence theories on the proportion of salary in sales compensation. Level of task programmability, capacity to observe behavior, career opportunities and financial resources offered were associated with an increased use of salary pay. In contrast, difficulty of measuring result outcomes, availability of product/service-related resources and high marginal sales force productivity were associated with decreased use of the salary component. Results supported the argument that integration of multiple theoretical perspectives offered a better explanation of pay policy. However, the results have not supported the ability of market and selling uncertainty to predict the proportion of salary L'objectif de cette étude était d'examiner, auprès d'un échantillon de 325 organisations, l'influence des construits clés relatifs à la théorie de l'agence, la théorie des coûts de transaction et la théorie de la dépendence des ressource sur la proportion du salaire dans l'enveloppe de la rémunération directe du personnel de vente. Le niveau de programmation des tâches, la capacité à observer les comportements, les opportunités de carrière et les ressources financières offertes étaient associés à une augmentation du recours de la composante salariale. En revanche, le degré de difficulté à mesurer les résultats, la disponibilité de ressources reliés aux produits/services et un grand différentiel de performance étaient associés à une diminution de la composante salaire. Les résultats supportent l'argument de l'intégration d'une multitude de perspecttives théoriques pour expliquer le choix des stratégies salariales.Sales, compensation, agency theory, cost analysis theory, resource dependence theory, Représentants aux ventes, rémunération, théorie de l'agence, théorie des coûts de transaction, théorie de la dépendance des ressources

    Le normatif et le descriptif en théorie du droit

    Get PDF
    [À l'origine dans / Was originally part of : Fac. Droit - Coll. facultaire - Théories du droit

    Spectroscopic analysis of DA white dwarfs with 3D model atmospheres

    Get PDF
    We present the first grid of mean three-dimensional (3D) spectra for pure-hydrogen (DA) white dwarfs based on 3D model atmospheres. We use CO5BOLD radiation-hydrodynamics 3D simulations instead of the mixing-length theory for the treatment of convection. The simulations cover the effective temperature range of 6000 < Teff (K) < 15,000 and the surface gravity range of 7 < log g < 9 where the large majority of DAs with a convective atmosphere are located. We rely on horizontally averaged 3D structures (over constant Rosseland optical depth) to compute spectra. It is demonstrated that our spectra can be smoothly connected to their 1D counterparts at higher and lower Teff where the 3D effects are small. Analytical functions are provided in order to convert spectroscopically determined 1D effective temperatures and surface gravities to 3D atmospheric parameters. We apply our improved models to well studied spectroscopic data sets from the Sloan Digital Sky Survey and the White Dwarf Catalog. We confirm that the so-called high-log g problem is not present when employing spectra and that the issue was caused by inaccuracies in the 1D mixing-length approach. The white dwarfs with a radiative and a convective atmosphere have derived mean masses that are the same within ~0.01 Msun, in much better agreement with our understanding of stellar evolution. Furthermore, the 3D atmospheric parameters are in better agreement with independent Teff and log g values from photometric and parallax measurements.Comment: 15 pages, 18 figures, 10 pages online appendix, accepted for publication in Astronomy and Astrophysic

    Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Get PDF
    We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome

    Pairing dynamics in strongly correlated superconductivity

    Full text link
    Confirmation of the phononic origin of Cooper pair formation in superconductors came with the demonstration that the interaction was retarded and that the corresponding energy scales were associated with phonons. Using cellular dynamical mean-field theory for the two-dimensional Hubbard model, we identify such retardation effects in d-wave pairing and associate the corresponding energy scales with short-range spin fluctuations. We find which frequencies are relevant for pairing as a function of interaction strength and doping and show that the disappearance of superconductivity on the overdoped side coincides with the disappearance of the low energy feature in the antiferromagnetic fluctuations, as observed in neutron scattering experiments.Comment: LaTeX, 8 pages, 8 figure

    Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory

    Full text link
    We study the Hubbard model using the Cellular Dynamical Mean-Field Theory (CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic details of CDMFT with the Hirsch-Fye QMC method for the solution of the self-consistently embedded quantum cluster problem. We use the one- and two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC particularly for small clusters by comparing with the exact results and also with other quantum cluster methods. We calculate single-particle Green's functions and self-energies on small clusters to study their size dependence in one- and two-dimensions.Comment: 14 pages, 18 figure

    Competition between charge and spin order in the tUVt-U-V extended Hubbard model on the triangular lattice

    Full text link
    Several new classes of compounds can be modeled in first approximation by electrons on the triangular lattice that interact through on-site repulsion UU as well as nearest-neighbor repulsion VV. This extended Hubbard model on a triangular lattice has been studied mostly in the strong coupling limit for only a few types of instabilities. Using the extended two-particle self consistent approach (ETPSC), that is valid at weak to intermediate coupling, we present an unbiased study of the density and interaction dependent crossover diagram for spin and charge density wave instabilities of the normal state at arbitrary wave vector. When UU dominates over VV and electron filling is large, instabilities are chiefly in the spin sector and are controlled mostly by Fermi surface properties. Increasing VV eventually leads to charge instabilities. In the latter case, it is mostly the wave vector dependence of the vertex that determines the wave vector of the instability rather than Fermi surface properties. At small filling, non-trivial instabilities appear only beyond the weak coupling limit. There again, charge density wave instabilities are favored over a wide range of dopings by large VV at wave vectors corresponding to (3)×(3)\sqrt(3) \times \sqrt(3) superlattice in real space. Commensurate fillings do not play a special role for this instability. Increasing UU leads to competition with ferromagnetism. At negative values of UU or VV, neglecting superconducting fluctuations, one finds that charge instabilities are favored. In general, the crossover diagram presents a rich variety of instabilities. We also show that thermal charge-density wave fluctuations in the renormalized classical regime can open a pseudogap in the single-particle spectral weight, just as spin or superconducting fluctuations
    corecore