1,398 research outputs found

    Light-particle emission from the fissioning nuclei 126Ba, 188Pt and (266,272,278)/110: theoretical predictions and experimental results

    Full text link
    We present a comparison of our model treating fission dynamics in conjunction with light-particle (n, p, alpha) evaporation with the available experimental data for the nuclei 126Ba, 188Pt and three isotopes of the element Z=110. The dynamics of the symmetric fission process is described through the solution of a classical Langevin equation for a single collective variable characterizing the nuclear deformation along the fission path. A microscopic approach is used to evaluate the emission rates for pre-fission light particles. Entrance-channel effects are taken into account by generating an initial spin distribution of the compound nucleus formed by the fusion of two deformed nuclei with different relative orientations

    The detection of neutron clusters

    Get PDF
    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multineutron cluster liberated in the breakup of 14Be, most probably in the channel 10Be+4n. The various backgrounds that may mimic such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio

    Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets

    Full text link
    Spallation neutron production in proton induced reactions on Al, Fe, Zr, W, Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at the SATURNE accelerator in Saclay is reported. The experimental double-differential cross-sections are compared with calculations performed with different intra-nuclear cascade models implemented in high energy transport codes. The broad angular coverage also allowed the determination of average neutron multiplicities above 2 MeV. Deficiencies in some of the models commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in Phys. Rev.

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    Two Loop Scalar Self-Mass during Inflation

    Full text link
    We work in the locally de Sitter background of an inflating universe and consider a massless, minimally coupled scalar with a quartic self-interaction. We use dimensional regularization to compute the fully renormalized scalar self-mass-squared at one and two loop order for a state which is released in Bunch-Davies vacuum at t=0. Although the field strength and coupling constant renormalizations are identical to those of lfat space, the geometry induces a non-zero mass renormalization. The finite part also shows a sort of growing mass that competes with the classical force in eventually turning off this system's super-acceleration.Comment: 31 pages, 5 figures, revtex4, revised for publication with extended list of reference

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore