658 research outputs found

    Not driving alone: Commuting in the Twenty-first century

    Get PDF
    This paper investigates recent commuting trends in American workers. Unlike most studies of commuting that rely on Census data, this study utilizes the unique American Time Use Survey to detail the complex commuting patterns of modern-day workers. The data confirm what has been suspected, that incidence of driving alone has decreased substantially in recent years while carpooling has rebounded. The results from the multi-nominal logistic estimation of workers' commuting choices yield support for both the traditional economic determinants as well as for the newer, socio-economic factors. In addition to the cost savings, many commuters appear to value the social aspect of carpooling. Surprisingly, there is little evidence that the need for autonomy plays much of a factor in explaining workerÕs choice of the journey to work. The estimated short-run elasticity of carpooling with respect to real gas prices appears to be quite high and largely accounts for the significant decline in the incidence of driving alone.Ride sharing, carpooling, commuting, gasoline process, social capital

    Creation of a dipolar superfluid in optical lattices

    Full text link
    We show that by loading a Bose-Einstein condensate (BEC) of two different atomic species into an optical lattice, it is possible to achieve a Mott-insulator phase with exactly one atom of each species per lattice site. A subsequent photo-association leads to the formation of one heteronuclear molecule with a large electric dipole moment, at each lattice site. The melting of such dipolar Mott-insulator creates a dipolar superfluid, and eventually a dipolar molecular BEC.Comment: 4 pages, 2 eps figure

    The potential of the ground state of NaRb

    Full text link
    The X1Σ+^{1}\Sigma ^{+} state of NaRb was studied by Fourier transform spectroscopy. An accurate potential energy curve was derived from more than 8800 transitions in isotopomers 23^{23}Na85^{85}Rb and 23^{23}Na87^{87}Rb. This potential reproduces the experimental observations within their uncertainties of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last observed energy level (v′′=76v''=76, J′′=27J''=27) lies at ≈12.4\approx 12.4 \AA, leading to a energy of 4.5 \rcm below the ground state asymptote.Comment: 8 pages, 6 figures and 2 table

    Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium

    Get PDF
    We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determination of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure

    Optimizing the second-order optical nonlinearities of organic molecules: asymmetric cyanines and highly polarized polyenes

    Get PDF
    e recently reported that there is an optimal combination of donor and acceptor strengths for a given molecular length and bridge structure that maximizes (beta) . For this combination, there is the correct degree of bond length alternation and asymmetry in the molecule. Our recent findings suggest that molecules that can be viewed as asymmetric cyanines with relatively small amounts of bond length alternation are nearly optimal. In this manner, we have identified molecules with nonlinearities many times that of conventional chromophores for a given length. In this paper, we will present a new computational analysis that allows the correlation of bond length alternation with hyperpolarizabilities and will present EFISH data on simple donor-acceptor polyene chromophores

    The X1Σ+^1\Sigma^+ and a3Σ+^3\Sigma^+ states of LiCs studied by Fourier-transform spectroscopy

    Full text link
    We present the first high-resolution spectroscopic study of LiCs. LiCs is formed in a heat pipe oven and studied via laser-induced fluorescence Fourier-transform spectroscopy. By exciting molecules through the X1Σ+^1\Sigma^+-B1Π^1\Pi and X1Σ+^1\Sigma^+-D1Π^1\Pi transitions vibrational levels of the X1Σ+^1\Sigma^+ ground state have been observed up to 3cm^{-1} below the dissociation limit enabling an accurate construction of the potential. Furthermore, rovibrational levels in the a3Σ+^3\Sigma^+ triplet ground state have been observed because the excited states obtain sufficient triplet character at the corresponding excited atomic asymptote. With the help of coupled channels calculations accurate singlet and triplet ground state potentials were derived reaching the atomic ground state asymptote and allowing first predictions of cold collision properties of Li + Cs pairs.Comment: 10 pages, 5 figures. Submitted for publicatio

    Resonance phenomena in ultracold dipole-dipole scattering

    Full text link
    Elastic scattering resonances occurring in ultracold collisions of either bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer adiabatic representation of the two-bodydynamics provides both a qualitative classification scheme and a quantitative WKB quantization condition that predicts several sequences of resonant states. It is found that the near-threshold energy dependence of ultracold collision cross sections varies significantly with the particle exchange symmetry, with bosonic systems showing much smoother energy variations than their fermionic counterparts. Resonant variations of the angular distributions in ultracold collisions are also described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.

    A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data

    Full text link
    We have initiated a spectral line survey, at a wavelength of 3 millimeters, toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral line survey of the Sgr B2(N) region utilizing data from both an interferometer (BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified molecular transitions, 1 recombination line, and 120 unidentified transitions). This yields a spectral line density (lines per 100 MHz) of 6.06, which is much larger than any previous 3 mm line survey. We also present maps from the BIMA Array that indicate that most highly saturated species (3 or more H atoms) are products of grain chemistry or warm gas phase chemistry. Due to the nature of this survey we are able to probe each spectral line on multiple spatial scales, yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa
    • …
    corecore