36 research outputs found
Pacjent z zawałem serca i zespołem metabolicznym
Na zespół metaboliczny składa się wiele zaburzeń metabolicznych, takich jak: otyłość
trzewna, zaburzenia lipidowe, podwyższone ciśnienie tętnicze oraz hiperglikemia. Wiąże
się on z podwyższonym ryzykiem rozwoju cukrzycy typu 2, predysponuje do rozwoju
miażdżycy oraz chorób układu krążenia. Przedstawiony przypadek dotyczy 52-letniego
otyłego pacjenta z zawałem serca i z kumulacją wielu czynników ryzyka, u którego
w ostrym okresie zawału stwierdzono nieprawidłowe wartości glikemii
Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones
The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners
Analysis of the Slab Temperature, Thermal Stresses and Fractures Computed with the Implementation of Local and Average Boundary Conditions in the Secondary Cooling Zones
The numerical simulations of the temperature fields have been accomplished for slab casting made of a low carbon steel. The casting process of slab of 1500 mm in width and 225 mm in height has been modeled. Two types of boundary condition models of heat transfer have been employed in numerical simulations. The heat transfer coefficient in the first boundary condition model was calculated from the formula which takes into account the slab surface temperature and water flow rate in each secondary cooling zone. The second boundary condition model defines the heat transfer coefficient around each water spray nozzle. The temperature fields resulting from the average in zones water flow rate and from the nozzles arrangement have been compared. The thermal stresses and deformations resulted from such temperature field have given higher values of fracture criterion at slab corners
Kruchość wysokotemperaturowa stopów odlewniczych
Over-all mechanical properties of alloys are extremely low at the last stage of solidification where alloy exists at brittle temperature range (BTR). When the solidification process is completed a sudden and marked change in strength and ductility of metal is observed. It means that as long as liquid phase is present, metal will fail in a brittle manner. There are known different theories of brittleness of alloys in existence of liquid phase. The idea involved by authors of the paper is as follows: three major factors caused by presence of liquid may be taken into account: - decreasing the energy needed for crack nucleation, - increasing atomic diffusional flux out of the crack tip, - creating a path for abnormally quick diffusion of atoms from the crack tip.Własności mechaniczne stopów są bardzo niskie w ostatnim stadium krzepnięcia, w którym stop wykazuje kruchość wysokotemperaturową. Przy końcu procesu krzepnięcia obserwuje się nagłą zmianę wytrzymałości i plastyczności metalu. Dopóki występuje faza ciekła metal ulega zniszczeniu w sposób kruchy. Przyczyna tego mogą być trzy główne czynniki związane z obecnością fazy ciekłej: a) spadek energii potrzebnej do zarodkowania pęknięcia, b) wzrost strumienia dyfuzji atomów od wierzchołka pękniecia, c) utworzenie ścieżki do anomalnie szybkiej dyfuzji atomów od wierzchołka pękniecia
Analiza wpływu warunków brzegowych na pole temperatury wlewka ciągłego
Steel solidification in the continuous casting process starts in the mould, follows in the secondary cooling zones and finishes under air cooling conditions. Casting technology requires very effective heat transfer from the strand surface to the water cooling system. Design and control of the casting process is possible if the ingot temperature is known with a suitable accuracy. Measurements of the ingot temperature are complicated and expensive and due to these reasons are not common in practice. Numerical simulation have to be used to provide data which can be used to design and control of the ingot solidification. In the case of the temperature field modeling heat transfer boundary conditions have to be specified. In the literature wide range of formulas can be found and this may lead to essential errors in the heat transfer coefficient determination. In the paper the selected formulas have been employed in the finite element model to compute the ingot temperature field in the mould and secondary cooling zones. It has been shown that inaccurate determination of the heat flux transferred from the ingot surface to the mould leads to essential errors in the determination of the ingot temperature and solidification. Therefore empirical formulas or complex heat transfer models at ingot - mould interface ought to be employed in finite element models.Krzepnięcie stali w procesie ciągłego odlewania zachodzi w krystalizatorze i strefie chłodzenia wtónego. Technologia narzuca konieczność bardzo intensywnego odprowadzania ciepła od ciekłej stali, warstwy krzepnącej i zakrzepłej stali. Do prawidłowego prowadzenia odlewania konieczna jest znajomość wielu parametrów technologicznych, z których jednym z najważniejszych jest temperatura wlewka ciągłego. Bezpośrednie pomiary charakterystycznych dla COS wielkości w czasie krzepnięcia i stygnięcia wlewka są bardzo kosztowne oraz czasochłonne i z tych powodów nie znajdują szerszego zastosowania praktycznego. Najczęściej dane do analizy wpływu różnych parametrów wejściowych na proces krzepnięcia dostarczają symulacje numeryczne. Do prawidłowego ich wykonania potrzebne jest jednak określenie parametrów procesu. W przypadku temperatury bardzo ważną rolę odgrywają warunki brzegowe opisujące wymianę ciepła między powierzchnią wlewka ciągłego i otoczeniem. Ich niepoprawne przyjęcie może skutkować niedokładnym wyznaczeniem pola temperatury, a w konsekwencji błędami obliczeń pozostałych parametrów procesu. W literaturze często spotykane są różne formuły pozwalające na wyliczenie współczynnika przejmowania ciepła lub gęstości strumienia ciepła na powierzchni wlewka ciągłego. W pracy przedstawiono przykłady obliczeń pola temperatury dla wybranych zależności opisujących wymianę ciepła wlewka z otoczeniem w strefie krystalizatora i chłodzenia wtórnego. Przedstawiono wyniki symulacji oraz ich analizę. Obliczenia wykonano z zastosowaniem autorskiego modelu matematycznego i numerycznego wymiany ciepła oraz oprogramowania wykorzystującego metodę elementów skończonych
Wpływ modelu metody elementów skończonych na współczynnika wymiany ciepła wyznaczany z rozwiązania odwrotnego procesu laminarnego chłodzenia płyty metalowej
The industrial hot rolling mills are equipped with systems for controlled cooling of hot steel products. In the case of strip rolling mills the main cooling system is situated at run-out table to ensure the required strip temperature before coiling. One of the most important system is laminar jets cooling. In this system water is falling down on the upper strip surface. The proper cooling rate affects the final mechanical properties of steel which strongly dependent on microstructure evolution processes. Numerical simulations can be used to determine the water flux which should be applied in order to control strip temperature. The heat transfer boundary condition in case of laminar jets cooling is defined by the heat transfer coefficient, cooling water temperature and strip surface temperature. Due to the complex nature of the cooling process the existing heat transfer models are not accurate enough. The heat transfer coefficient cannot be measured directly and the boundary inverse heat conduction problem should be formulated in order to determine the heat transfer coefficient as a function of cooling parameters and strip surface temperature. In inverse algorithm various heat conduction models and boundary condition models can be implemented. In the present study two three dimensional finite element models based on linear and non-linear shape functions have been tested in the inverse algorithm. Further, two heat transfer boundary condition models have been employed in order to determine the heat transfer coefficient distribution at the hot plate cooled by laminar jets. In the first model heat transfer coefficient distribution over the cooled surface has been approximated by the witch of Agnesi type function with the expansion in time of the approximation parameters. In the second model heat transfer coefficient distribution over the cooled plate surface has been approximated by the surface elements serendipity family with parabolic shape functions. The heat transfer coefficient values at surface element nodes have been expanded in time by the cubic-spline functions. The numerical tests have shown that in the case of heat conduction model based on linear shape functions inverse solution differs significantly from the searched boundary condition. The dedicated finite element heat conduction model based on non-linear shape functions has been developed to ensure inverse determination of heat transfer coefficient distribution over the cooled surface in the time of cooling. The heat transfer coefficient model based on surface elements serendipity family is not limited to a particular form of the heat flux distribution. The solution has been achieved for measured temperatures of the steel plate cooled by 9 laminar jets.Nowoczesne linie walcowania blach na gorąco posiadają instalacje do wymuszonego chłodzenia. Jego celem jest kontrolowanie szybkości zmian temperatury blachy w całej objętości zapewniając tym wymaganą strukturę i własności mechaniczne. Chłodzenie jest prowadzone w końcowej części linii technologicznej, w której nad górną i pod dolną powierzchnią gorącego pasma umieszczone są urządzenia dostarczające wodę chłodzącą. Z uwagi na sposób podawania wody chłodzącej można je podzielić na trzy główne systemy: chłodzenie laminarne, chłodzenie z użyciem kurtyn wodnych oraz chłodzenie natryskiem wodnym. W istniejących liniach walcowniczych można spotkać kombinacje poszczególnych systemów. Projektowanie systemów chłodniczych jest trudne i musi być wspomagane przez modele matematyczne i numeryczne wymiany ciepła między gorącą powierzchnią blachy a wodą i otoczeniem. Podstawowe znaczenie dla symulacji procesu ma przyjęcie poprawnych wartości współczynników wymiany ciepła, których znajomość w dużej mierze determinuje dokładność obliczeń. Współczynnik wymiany ciepła nie może być zmierzony bezpośrednio i konieczne jest zastosowanie rozwiązań odwrotnych zagadnienia przewodzenia ciepła. W algorytmach odwrotnych możliwe jest użycie różnych modeli do rozwiązania równania przewodzenia ciepła. Zastosowane modele w istotnym stopniu wpływają na jakość rozwiązania odwrotnego. W pracy przedstawiono wyniki testów dwóch modeli przewodzenia ciepła opartych na liniowych i nieliniowych funkcjach kształtu w algorytmie metody elementów skończonych. Testowano również dwa modele aproksymacji warunku brzegowego. Wybrany model warunku brzegowego i model metody elementów skończonych wykorzystujący nieliniowe funkcje kształtu zastosowano do wyznaczenia współczynnika wymiany ciepła w procesie chłodzenia gorącej płyty stalowej 9 strumieniami wody swobodnie opadającej na jej powierzchnie. Uzyskano rozwiązanie przedstawiajace rozkład współczynnika wymiany ciepła i gęstości strumienia ciepła na powierzchni płyty w czasie jej chodzenia
