5,781 research outputs found

    Inverse monoids of partial graph automorphisms

    Full text link
    A partial automorphism of a finite graph is an isomorphism between its vertex induced subgraphs. The set of all partial automorphisms of a given finite graph forms an inverse monoid under composition (of partial maps). We describe the algebraic structure of such inverse monoids by the means of the standard tools of inverse semigroup theory, namely Green's relations and some properties of the natural partial order, and give a characterization of inverse monoids which arise as inverse monoids of partial graph automorphisms. We extend our results to digraphs and edge-colored digraphs as well

    Incoherent quantum feedback control of collective light scattering by Bose-Einstein condensates

    Full text link
    It is well known that in the presence of a ring cavity the light scattering from a uniform atomic ensemble can become unstable resulting in the collective atomic recoil lasing. This is the result of a positive feedback due to the cavity. We propose to add an additional electronic feedback loop based on the photodetection of the scattered light. The advantage is a great flexibility in choosing the feedback algorithm, since manipulations with electric signals are very well developed. In this paper we address the application of such a feedback to atoms in the Bose-Einstein condensed state and explore the quantum noise due to the incoherent feedback action. We show that although the feedback based on the photodetection does not change the local stability of the initial uniform distribution with respect to small disturbances, it reduces the region of attraction of the uniform equilibrium. The feedback-induced nonlinearity enables quantum fluctuations to bring the system out of the stability region and cause an exponential growth even if the uniform state is globally stable without the feedback. Using numerical solution of the feedback master equation we show that there is no feedback-induced noise in the quadratures of the excited atomic and light modes. The feedback loop, however, introduces additional noise into the number of quanta of these modes. Importantly, the feedback opens an opportunity to position the modulated BEC inside a cavity as well as tune the phase of scattered light. This can find applications in precision measurements and quantum simulations.Comment: 7 pages, 7 figure

    A Generalized Fractional Calculus of Variations

    Full text link
    We study incommensurate fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives and generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, transversality conditions for free boundary value problems, and a generalized Noether type theorem.Comment: This is a preprint of a paper whose final and definitive form will appear in Control and Cybernetics. Paper submitted 01-Oct-2012; revised 25-March-2013; accepted for publication 17-April-201

    Variable Order Fractional Variational Calculus for Double Integrals

    Full text link
    We introduce three types of partial fractional operators of variable order. An integration by parts formula for partial fractional integrals of variable order and an extension of Green's theorem are proved. These results allow us to obtain a fractional Euler-Lagrange necessary optimality condition for variable order two-dimensional fractional variational problems.Comment: This is a preprint of a paper whose final and definite form will be published in: 51st IEEE Conference on Decision and Control, December 10-13, 2012, Maui, Hawaii, USA. Article Source/Identifier: PLZ-CDC12.1240.d4462b33. Submitted 07-March-2012; accepted 17-July-201
    • …
    corecore