49 research outputs found

    Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps

    Get PDF
    © 2017 The Author(s). This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Transport properties of copper phthalocyanine based organic electronic devices

    Get PDF
    Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green's function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobilityand the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic

    Recent Updates on the Melanin-Concentrating Hormone (MCH) and Its Receptor System: Lessons from MCH1R Antagonists

    Get PDF
    Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic peptide which was originally found to lighten skin color in fish that is highly conserved among many species. MCH interacts with two G-protein-coupled receptors, MCH1R and MCH2R, but only MCH1R is expressed in rodents. MCH is mainly synthesized in the lateral hypothalamus and zona incerta, while MCH1R is widely expressed throughout the brain. Thus, MCH signaling is implicated in the regulation of many physiological functions. The identification of MCH1R has led to the development of small-molecule MCH1R antagonists that can block MCH signaling. MCH1R antagonists are useful not only for their potential therapeutic value, but also for understanding the physiological functions of the endogenous MCH system. Here, we review the physiological functions of the MCH system which have been investigated using MCH1R antagonists such as food intake, anxiety, depression, reward, and sleep. This will help us understand the physiological functions of the MCH system and suggest some of the potential applications of MCH1R antagonists in human disorders

    Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields

    Full text link
    International audienceRigid slice-to-volume registration is a challenging task, which finds application in medical imaging problems like image fusion for image guided surgeries and motion correction for volume reconstruction. It is usually formulated as an optimization problem and solved using standard continuous methods. In this paper, we discuss how this task be formulated as a discrete labeling problem on a graph. Inspired by previous works on discrete estimation of linear transformations using Markov Random Fields (MRFs), we model it using a pairwise MRF, where the nodes are associated to the rigid parameters, and the edges encode the relation between the variables. We compare the performance of the proposed method to a continuous formulation optimized using simplex, and we discuss how it can be used to further improve the accuracy of our approach. Promising results are obtained using a monomodal dataset composed of magnetic resonance images (MRI) of a beating heart

    Expression and functional activity of PPARγ in pancreatic β cells

    Full text link
    1. Rosiglitazone is an agonist of peroxisome proliferator activated receptor-γ (PPARγ) and ameliorates insulin resistance in type II diabetes. In addition, it may also promote increased pancreatic β-cell viability, although it is not known whether this effect is mediated by a direct action on the β cell. We have investigated this possibility. 2. Semiquantitative real-time reverse transcription–polymerase chain reaction analysis (Taqman®) revealed that freshly isolated rat islets and the clonal β-cell line, BRIN-BD11, express PPARγ, as well as PPARα and PPARδ. The levels of expression of PPARγ were estimated by reference to adipose tissue and were found to represent approximately 60% (islets) and 30% (BRIN-BD11) of that found in freshly isolated visceral adipose tissue. Western blotting confirmed the presence of immunoreactive PPARγ in rat (and human) islets and in BRIN-BD11 cells. 3. Transfection of BRIN-BD11 cells with a PPARγ-sensitive luciferase reporter construct was used to evaluate the functional competence of the endogenous PPARγ. Luciferase activity was modestly increased by the putative endogenous ligand, 15-deoxy-Δ(12,14) prostaglandin J(2) (15dPGJ(2)). Rosiglitazone also caused activation of the luciferase reporter construct but this effect required concentrations of the drug (50–100 μM) that are beyond the expected therapeutic range. This suggests that PPARγ is relatively insensitive to activation by rosiglitazone in BRIN-BD11 cells. 4. Exposure of BRIN-BD11 cells to the lipotoxic effector, palmitate, caused a marked loss of viability. This was attenuated by treatment of the cells with either actinomycin D or cycloheximide suggesting that a pathway of programmed cell death was involved. Rosiglitazone failed to protect BRIN-BD11 cells from the toxic actions of palmitate at concentrations up to 50 μM. Similar results were obtained with a range of other PPARγ agonists. 5. Taken together, the present data suggest that, at least under in vitro conditions, thiazolidinediones do not exert direct protective effects against fatty acid-mediated cytotoxicity in pancreatic β cells
    corecore