17 research outputs found
Integrated impact modelling of climate change and adaptation policies on land use and water resources in Austria"
Climate change is a major driver of land use and ecosystems. Changes in climatic conditions will affect the quality and quantity of water resources. Autonomous adaptation by farmers can influence the compliance with the good ecological and chemical status according to the EU Water Framework Directive. We present results from an integrated impact modelling framework (IIMF) to analyze policy options for planned adaptation in agricultural land use and sustainable management of land and water resources until 2040. The IIMF consists of the bio-physical process model EPIC, the regional land use optimization model PASMA[grid], the quantitative precipitation/runoff TUW model, and the surface water emission model MONERIS. Stakeholder driven scenarios facilitate multi-actor knowledge transfer. Climate change scenarios are combined with socio-economic and policy pathways. The latter include water protection measures on fertilization management, soil and crop rotation management. The results show that the selected climate change and policy scenarios impact average agricultural gross margins by ±2%. However, regional impacts are more severe particularly under assumptions of decreasing precipitation patterns. The water protection policies can alleviate pressures compared to the business as usual scenario but do not lead to sufficient conditions in all watersheds. To conclude, the IIMF is able to capture the interfaces between water quality and land use and to cover multiple policy and climate scenarios. However, despite efforts to increase the robustness of data and model interfaces, uncertainties need to be tackled in subsequent studies
Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor
Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH(4)), total suspended solids (TSS), and total organic carbon (TOC) was obtained
Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease
Alzheimer’s disease (AD) is one of the most common causes of dementia in the world. Patients with AD frequently complain of vision disturbances that do not manifest as changes in routine ophthalmological examination findings. The main causes of these disturbances are neuropathological changes in the visual cortex, although abnormalities in the retina and optic nerve cannot be excluded. Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) tests are commonly used in ophthalmology to estimate bioelectrical function of the retina and optic nerve. The aim of this study was to determine whether retinal and optic nerve function, measured by PERG and PVEP tests, is changed in individuals in the early stages of AD with normal routine ophthalmological examination results. Standard PERG and PVEP tests were performed in 30 eyes of 30 patients with the early stages of AD. The results were compared to 30 eyes of 30 normal healthy controls. PERG and PVEP tests were recorded in accordance with the International Society for Clinical Electrophysiology of Vision (ISCEV) standards. Additionally, neural conduction was measured using retinocortical time (RCT)—the difference between P100-wave latency in PVEP and P50-wave implicit time in PERG. In PERG test, PVEP test, and RCT, statistically significant changes were detected. In PERG examination, increased implicit time of P50-wave (P < 0.03) and amplitudes reductions in P50- and N95-waves (P < 0.0001) were observed. In PVEP examination, increased latency of P100-wave (P < 0.0001) was found. A significant increase in RCT (P < 0.0001) was observed. The most prevalent features were amplitude reduction in N95-wave and increased latency of P100-wave which were seen in 56.7% (17/30) of the AD eyes. In patients with the early stages of AD and normal routine ophthalmological examination results, dysfunction of the retinal ganglion cells as well as of the optic nerve is present, as detected by PERG and PVEP tests. These dysfunctions, at least partially, explain the cause of visual disturbances observed in patients with the early stages of AD
Impact of solid retention time and nitrification capacity on the ability of activated sludge to remove pharmaceuticals
Removal of five acidic pharmaceuticals (ibuprofen, ketoprofen, naproxen, diclofenac and clofibric acid) by activated sludge from five municipal activated sludge treatment processes, with various sludge ages and nitrification capacities, was assessed through batch experiments. The increase in aerobic sludge age from 1-3 to 7 d seemed to be critical for the removal of naproxen and ketoprofen, with markedly higher rates of removal at sludge ages of 7 d or more. No removal was shown for diclofenac and clofibric acid, whereas high rates were observed for ibuprofen in all investigated sludges. Parallel examinations of activated sludge batches with and without allylthiourea (12 mg/L), an inhibitor of ammonia monooxygenase, showed minor to moderate influence on the removal rates of ketoprofen and naproxen. These results suggest that the removal rates of biodegradable pharmaceuticals in municipal activated sludge processes are strongly linked to the heterotrophic bacteria community