88 research outputs found
Near-field spectroscopy of a gated electron gas: a direct evidence for electrons localization
The near-field photoluminescence of a gated two-dimensional electron gas is
measured. We use the negatively charged exciton, formed by binding of an
electron to a photo-excited electron-hole pair, as an indicator for the local
presence of charge. Large spatial fluctuations in the luminescence intensity of
the negatively charged exciton are observed. These fluctuations are shown to be
due to electrons localized in the random potential of the remote ionized
donors. We use these fluctuations to image the electrons and donors
distribution in the plane.Comment: 10 pages, 5 figures, to be published in PR
Binding Energy of Charged Excitons in ZnSe-based Quantum Wells
Excitons and charged excitons (trions) are investigated in ZnSe-based quantum
well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of
magneto-optical spectroscopy. Binding energies of negatively () and positively
(X+) charged excitons are measured as functions of quantum well width, free
carrier density and in external magnetic fields up to 47 T. The binding energy
of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well
width from 190 to 29 A. The binding energies of X+ are about 25% smaller than
the binding energy in the same structures. The magnetic field behavior of and
X+ binding energies differ qualitatively. With growing magnetic field strength,
increases its binding energy by 35-150%, while for X+ it decreases by 25%.
Zeeman spin splittings and oscillator strengths of excitons and trions are
measured and discussed
Long-lived charged multiple-exciton complexes in strong magnetic fields
We consider the charged exciton complexes of an ideal two-dimensional
electron-hole system in the limit of strong magnetic fields. A series of
charged multiple-exciton states is identified and variational and finite-size
exact diagonalization calculations are used to estimate their binding energies.
We find that, because of a hidden symmetry, bound states of excitons and an
additional electron cannot be created by direct optical absorption and, once
created, have an infinite optical recombination lifetime. We also estimate the
optical recombination rates when electron and hole layers are displaced and the
hidden symmetry is violated.Comment: 12 pages + 2 PostScript figures, Revtex, Submitted to Phys. Rev. Let
- …