959 research outputs found
Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces
Nonlinear optical phenomena in nanostructured materials have been challenging
our perceptions of nonlinear optical processes that have been explored since
the invention of lasers. For example, the ability to control optical field
confinement, enhancement, and scattering almost independently, allows nonlinear
frequency conversion efficiencies to be enhanced by many orders of magnitude
compared to bulk materials. Also, the subwavelength length scale renders phase
matching issues irrelevant. Compared with plasmonic nanostructures, dielectric
resonator metamaterials show great promise for enhanced nonlinear optical
processes due to their larger mode volumes. Here, we present, for the first
time, resonantly enhanced second-harmonic generation (SHG) using Gallium
Arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical
resonators we observe SHG enhancement factors as large as 104 relative to
unpatterned GaAs. At the magnetic dipole resonance we measure an absolute
nonlinear conversion efficiency of ~2X10^(-5) with ~3.4 GW/cm2 pump intensity.
The polarization properties of the SHG reveal that both bulk and surface
nonlinearities play important roles in the observed nonlinear process
Evolution of dust and ice features around FU Orionis objects
(abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri
stars observed with the Spitzer Space Telescope or with the Infrared Space
Observatory (ISO). Based on the appearance of the 10 micron silicate feature we
define 2 categories of FUors. Objects showing the silicate feature in
absorption (Category 1) are still embedded in a dusty and icy envelope. The
shape of the 10 micron silicate absorption bands is compared to typical dust
compositions of the interstellar medium and found to be in general agreement.
Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but
a superposed emission feature can explain the observed shape. We derive optical
depths and extinction values from the silicate band and additional ice bands at
6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at
15.2 micron allows us to search for evidence for ice processing and constrains
whether the absorbing material is physically linked to the central object or in
the foreground. For objects showing the silicate feature in emission (Category
2), we argue that the emission comes from the surface layer of accretion disks.
Analyzing the dust composition reveals that significant grain growth has
already taken place within the accretion disks, but no clear indications for
crystallization are present. We discuss how these observational results can be
explained in the picture of a young, and highly active accretion disk. Finally,
a framework is proposed as to how the two categories of FUors can be understood
in a general paradigm of the evolution of young, low-mass stars. Only one
object (Parsamian 21) shows PAH emission features. Their shapes, however, are
often seen toward evolved stars and we question the object's status as a FUor
and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8
tables and 24 figure
Chromospheric seismology above sunspot umbrae
The acoustic resonator is an important model for explaining the three-minute
oscillations in the chromosphere above sunspot umbrae. The steep temperature
gradients at the photosphere and transition region provide the cavity for the
acoustic resonator, which allows waves to be both partially transmitted and
partially reflected. In this paper, a new method of estimating the size and
temperature profile of the chromospheric cavity above a sunspot umbra is
developed. The magnetic field above umbrae is modelled numerically in 1.5D with
slow magnetoacoustic wave trains travelling along magnetic fieldlines.
Resonances are driven by applying the random noise of three different
colours---white, pink and brown---as small velocity perturbations to the upper
convection zone. Energy escapes the resonating cavity and generates wave trains
moving into the corona. Line of sight (LOS) integration is also performed to
determine the observable spectra through SDO/AIA. The numerical results show
that the gradient of the coronal spectra is directly correlated with the
chromosperic temperature configuration. As the chromospheric cavity size
increases, the spectral gradient becomes shallower. When LOS integrations is
performed, the resulting spectra demonstrate a broadband of excited frequencies
that is correlated with the chromospheric cavity size. The broadband of excited
frequencies becomes narrower as the chromospheric cavity size increases. These
two results provide a potentially useful diagnostic for the chromospheric
temperature profile by considering coronal velocity oscillations
Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2
Controlling light emission from quantum emitters has important applications
ranging from solid-state lighting and displays to nanoscale single-photon
sources. Optical antennas have emerged as promising tools to achieve such
control right at the location of the emitter, without the need for bulky,
external optics. Semiconductor nanoantennas are particularly practical for this
purpose because simple geometries, such as wires and spheres, support multiple,
degenerate optical resonances. Here, we start by modifying Mie scattering
theory developed for plane wave illumination to describe scattering of dipole
emission. We then use this theory and experiments to demonstrate several
pathways to achieve control over the directionality, polarization state, and
spectral emission that rely on a coherent coupling of an emitting dipole to
optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was
demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2
by optically coupling it to a Si nanowire
Post common envelope binaries from the SDSS VI. SDSS J120615.73+510047.0 : a new low accretion rate magnetic binary
We report the discovery of the ninth pre-polar consisting of a late-type ZAMS secondary and a magnetic white dwarf. The white dwarf accretes at an extreme low rate, \dot{M} \sim 10^ yr-1, from the wind of the companion donor star. The source was found in our systematic search for WD/MS binaries within SDSS/SEGUE. Based on seven Sloan spectra we estimate a binary period of ~200, 230, or 270 min. The UV to IR spectral energy distribution was decomposed into a dM3-dM4 ZAMS secondary and a cool white dwarf, ~9000 K, which consistently imply a distance between 360 and 420 pc. The optical spectrum displays one pronounced cyclotron hump, likely originating from a low-temperature plasma, ~1 keV, in a field of 108 MG. We comment on the evolutionary link between polars and pre-polars
Dwarf novae in the Hamburg quasar survey : rarer than expected
Aims. We report the discovery of five new dwarf novae that were spectroscopically identified in the Hamburg Quasar Survey (HQS),and discuss the properties of the sample of new dwarf novae from the HQS.
Methods. Follow-up time-resolved spectroscopy and photometry have been obtained to characterise the new systems.
Results. The orbital periods determined from analyses of the radial velocity variations and/or orbital photometric variability are Porb 105.1min or Porb 109.9min for HS 0417+7445, Porb = 114.3 ± 2.7min for HS 1016+3412, Porb = 92.66 ± 0.17 min for HS 1340+1524, Porb = 272.317 ± 0.001 min for HS 1857+7127, and Porb = 258.02 ± 0.56 min for HS 2214+2845. HS 1857+7127 is found to be partially eclipsing. In HS 2214+2845 the secondary star of spectral type M3 ± 1 is clearly detected, and we estimate the distance to the system to be d = 390 ± 40 pc. We recorded one superoutburst of HS 0417+7445, identifying the system as a SUUMatype
dwarf nova. HS 1016+3412 and HS 1340+1524 have rare outbursts, and their subtype is yet undetermined. HS 1857+7127 frequently varies in brightness and may be a ZCam-type dwarf nova. HS 2214+2845 is a UGem-type dwarf nova with a most likely cycle length of 71 d.
Conclusions. To date, 14 new dwarf novae have been identified in the HQS. The ratio of short-period (3 h)systems of this sample is 1.3, much smaller compared to the ratio of 2.7 found for all known dwarf novae. The HQS dwarf novae display typically infrequent or low-amplitude outburst activity, underlining the strength of spectroscopic selection in identifying new
CVs independently of their variability. The spectroscopic properties of short-period CVs in the HQS, newly identified and previously known, suggest that most, or possibly all of them are still evolving towards the minimum period. Their total number agrees with the predictions of population models within an order of magnitude. However, the bulk of all CVs is predicted to have evolved past the minimum period, and those systems remain unidentified. This suggests that those post-bounce systems have markedly weaker Hβ emission lines compared to the average known short-period CVs, and undergo no or extremely rare outbursts
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
- …
