65 research outputs found

    Fat Deposits in Certain Ericacere

    Get PDF
    The purpose of this work was to investigate the structures of certain available plants of the family Ericacere with special interest in fat deposits in the tissues. HISTORICAL. Priestly and Hinchliffe (8) have called attention to the characteristic appearance of plants growing in peat moors of England. These plants are of a stunted nature, dark green in color, leathery in texture, and with very little leaf surface. These characteristics, along with certain others, have led to these plants being grouped with xerophytes. This seems strange, as xerophytism is associated, normally, with scarcity of water

    Systemic Inhibition of Tissue-Nonspecific Alkaline Phosphatase Alters the Brain-Immune Axis in Experimental Sepsis

    Get PDF
    Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, IP) daily for 7 days. While SBI-425 administration did not affect clinical severity outcomes, we found that SBI-425 administration suppressed CD4 + Foxp3+ CD25− and CD8 + Foxp3+ CD25− splenocyte T-cell populations compared to controls. Further evaluation of SBI-425’s effects in the brain revealed that TNAP activity was suppressed in the brain parenchyma of SBI-425-treated mice compared to controls. When primary brain endothelial cells were treated with a proinflammatory stimulus the addition of SBI-425 treatment potentiated the loss of barrier function in BBB endothelial cells. To further demonstrate a protective role for TNAP at endothelial barriers within this axis, transgenic mice with a conditional overexpression of TNAP were subjected to experimental sepsis and found to have increased survival and decreased clinical severity scores compared to controls. Taken together, these results demonstrate a novel role for TNAP activity in shaping the dynamic interactions within the brain-immune axis

    Can We Really Prevent Suicide?

    Get PDF
    Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia

    Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of <it>Tinospora cordifolia </it>extract that are exerted on circulating macrophages isolated from CCl<sub>4 </sub>(0.5 ml/kg body weight) intoxicated male albino mice.</p> <p>Methods</p> <p>Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. <it>T. cordifolia </it>extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay.</p> <p>Results</p> <p>The number of morphologically altered macrophages was increased in mice exposed to CCl<sub>4</sub>. Administration of CCl<sub>4 </sub>(i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl<sub>4 </sub>intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl<sub>4. </sub>However oral administration of aqueous fraction of <it>Tinospora cordifolia </it>stem parts at a dose of 40 mg/kg body weight (<it>in vivo</it>) in CCl<sub>4 </sub>exposed mice ameliorated the effect of CCl<sub>4</sub>, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl<sub>4 </sub>intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of <it>Tinospora cordifolia </it>at a dose of 150 mg/kg body weight.</p> <p>Conclusion</p> <p>From our findings it can be suggested that, polar fractions of <it>Tinospora cordifolia </it>stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of <it>Tinospora cordifolia </it>on immune functions needs to be elucidated.</p

    Evaluation of toxicity after one-months treatment with Bauhinia forficata decoction in streptozotocin-induced diabetic rats

    Get PDF
    BACKGROUND: Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. METHODS: An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. RESULTS: The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. CONCLUSIONS: Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study

    Imaging and Modeling of Myocardial Metabolism

    Get PDF
    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed

    Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis

    Get PDF
    Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages

    First record of Rhabdoceras suessi (Ammonoidea, Late Triassic) from the Transylvanian Triassic Series of the Eastern Carpathians (Romania) and a review of its biochronology, paleobiogeography and paleoecology

    Get PDF
    Abstract The occurrence of the heteromorphic ammonoid Rhabdoceras suessi Hauer, 1860, is recorded for the first time in the Upper Triassic limestone of the Timon-Ciungi olistolith in the Rarău Syncline, Eastern Carpathians. A single specimen of Rhabdoceras suessi co-occurs with Monotis (Monotis) salinaria that constrains its occurrence here to the Upper Norian (Sevatian 1). It is the only known heteromorphic ammonoid in the Upper Triassic of the Romanian Carpathians. Rhabdoceras suessi is a cosmopolitan species widely recorded in low and mid-paleolatitude faunas. It ranges from the Late Norian to the Rhaetian and is suitable for high-resolution worldwide correlations only when it co-occurs with shorter-ranging choristoceratids, monotid bivalves, or the hydrozoan Heterastridium. Formerly considered as the index fossil for the Upper Norian (Sevatian) Suessi Zone, by the latest 1970s this species lost its key biochronologic status among Late Triassic ammonoids, and it generated a controversy in the 1980s concerning the status of the Rhaetian stage. New stratigraphic data from North America and Europe in the subsequent decades resulted in a revised ammonoid biostratigraphy for the uppermost Triassic, the Rhaetian being reinstalled as the topmost stage in the current standard timescale of the Triassic. The geographic distribution of Rhabdoceras is compiled from published worldwide records, and its paleobiogeography and paleoecology are discussed
    • …
    corecore