766 research outputs found
Dissection of Human Vitreous Body Elements for Proteomic Analysis
The vitreous is an optically clear, collagenous extracellular matrix that fills the inside of the eye and overlies the retina. 1,2 Abnormal interactions between vitreous substructures and the retina underlie several vitreoretinal diseases, including retinal tear and detachment, macular pucker, macular hole, age-related macular degeneration, vitreomacular traction, proliferative vitreoretinopathy, proliferative diabetic retinopathy, and inherited vitreoretinopathies. 1,2 The molecular composition of the vitreous substructures is not known. Since the vitreous body is transparent with limited surgical access, it has been difficult to study its substructures at the molecular level. We developed a method to separate and preserve these tissues for proteomic and biochemical analysis. The dissection technique in this experimental video shows how to isolate vitreous base, anterior hyaloid, vitreous core, and vitreous cortex from postmortem human eyes. One-dimensional SDS-PAGE analyses of each vitreous component showed that our dissection technique resulted in four unique protein profiles corresponding to each substructure of the human vitreous body. Identification of differentially compartmentalized proteins will reveal candidate molecules underlying various vitreoretinal diseases
Replacing red and processed meat with lean or fatty fish and all-cause and cause specific mortality in Norwegian women. the Norwegian Women and Cancer Study (NOWAC): A prospective cohort study
Nordic Nutrition Recommendations recommend reducing red and processed meat and increasing fish consumption, but the impact of this
replacement on mortality is understudied. This study investigated the replacement of red and processed meat with fish in relation to mortality. Of
83 304 women in the Norwegian Women and Cancer Study (NOWAC) study, 9420 died during a median of 21·0 years of follow-up. The hazard
ratios (HR) for mortality were estimated using Cox proportional hazards regression with analyses stratified on red and processed meat intake due
to non-linearity. Higher processed meat (> 30 g/d), red and processed meat (> 50 g/d), and fatty fish consumption were associated with higher
mortality, while red meat and lean fish consumption were neutral or beneficial. Among women with higher processed meat intake (> 30 g/d),
replacing 20 g/d with lean fish was associated with lower all-cause (HR 0·92, 95 % CI 0·89, 0·96), cancer (HR 0·92, 95 % CI 0·88, 0·97) and CVD
mortality (HR 0·82, 95 % CI 0·74, 0·90), while replacing with fatty fish was associated with lower CVD mortality (HR 0·87, 95 % CI 0·77, 0·97), but
not with all-cause or cancer mortality. Replacing processed meat with fish among women with lower processed meat intake (≤ 30 g/d) or
replacing red meat with fish was not associated with mortality. Replacing processed meat with lean or fatty fish may lower the risk of premature
deaths in Norwegian women, but only in women with high intake of processed meat. These findings suggest that interventions to reduce
processed meat intake should target high consumers
Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic
A key driving factor behind rapid Arctic climate change is black carbon, the atmospheric aerosol that most efficiently absorbs sunlight. Our knowledge about black carbon in the Arctic is scarce, mainly limited to long-term measurements of a few ground stations and snap-shots by aircraft observations. Here, we combine observations from aircraft campaigns performed over nine years, and present vertically resolved average black carbon properties. A factor of four higher black carbon mass concentration (21.6 ng m average, 14.3 ng m median) was found in spring, compared to summer (4.7 ng m average, 3.9 ng m median). In spring, much higher inter-annual and geographic variability prevailed compared to the stable situation in summer. The shape of the black carbon size distributions remained constant between seasons with an average mass mean diameter of 202 nm in spring and 210 nm in summer. Comparison between observations and concentrations simulated by a global model shows notable discrepancies, highlighting the need for further model developments and intensified measurements
Implications of differences between recent anthropogenic aerosol emission inventories for diagnosed AOD and radiative forcing from 1990 to 2019
This study focuses on implications of differences between recent global emissions inventories for simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990–2019 period. We use the ECLIPSE version 6 (ECLv6) and CEDS year 2021 release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the resulting aerosol evolution to corresponding results derived with the first CEDS release, as well as to observed trends in regional and global aerosol optical depth (AOD). Using CEDS21 and ECLv6 results in a 3 % and 6 % lower global mean AOD compared to CEDS in 2014, primarily driven by differences over China and India, where the area average AOD is up to 30 % lower. These differences are considerably larger than the satellite-derived interannual variability in AOD. A negative linear trend over 2005–2017 in global AOD following changes in anthropogenic emissions is found with all three inventories but is markedly stronger with CEDS21 and ECLv6. Furthermore, we confirm that the model better captures the sign and strength of the observed AOD trend over China with CEDS21 and ECLv6 compared to using CEDS, while the opposite is the case for South Asia. We estimate a net global mean aerosol-induced RF in 2014 relative to 1990 of 0.08 W m−2 for CEDS21 and 0.12 W m−2 for ECLv6, compared to 0.03 W m−2 with CEDS. Using CEDS21, we also estimate the RF in 2019 relative to 1990 to be 0.10 W m−2, reflecting the continuing decreasing trend in aerosol loads post-2014. Our results facilitate more rigorous comparison between existing and upcoming studies of climate and health effects of aerosols using different emission inventories.</p
Hospital treatment -is it affordable? A structured cost analysis of vaginal deliveries and planned caesarean sections
<p>Abstract</p> <p>Introduction</p> <p>The analysis of cost effectiveness in hospitals is as difficult as treating the patients properly. We are yet not able to answer the simple question of what costs are caused by a certain diagnosis and its treatment during an average hospital stay.</p> <p>Methods</p> <p>To answer some issues of the global problem of cost effectiveness during hospitalisation, we analysed the costs and the cost structure of a normal obstetrical hospital stay during an uncomplicated vaginal delivery and a planned caesarean section. Cost data was collected and summarized from the patients file, the hospital's computer system gathering all cost centres, known material expenses and expenses of non obstetrical medical services.</p> <p>Results</p> <p>For vaginal deliveries/planned caesareans we can calculate with a surplus of about 83 €/1432 €. About 45% of the summarized costs are calculated on a reliable database.</p> <p>Discussion</p> <p>The introduction of the DRG based clearing system in Germany has aggravated the discussion on cost effectiveness. Our meticulous work-up of expenses excluded personal precautionary costs and personnel costs of documentation because no tools are described to depict such costs. If we would add these costs to the known expenses of our study, we strongly suspect that hospital treatment of vaginal deliveries or planned caesarean sections is not cost effective.</p
Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data
Inferred effective climate sensitivity (ECSinf) is
estimated using a method combining radiative forcing (RF) time series and
several series of observed ocean heat content (OHC) and near-surface
temperature change in a Bayesian framework using a simple energy balance
model and a stochastic model. The model is updated compared to our previous
analysis by using recent forcing estimates from IPCC, including OHC data for
the deep ocean, and extending the time series to 2014. In our main analysis,
the mean value of the estimated ECSinf is 2.0 °C, with a
median value of 1.9 °C and a 90 % credible interval (CI) of
1.2–3.1 °C. The mean estimate has recently been shown to be
consistent with the higher values for the equilibrium climate sensitivity
estimated by climate models. The transient climate response (TCR) is
estimated to have a mean value of 1.4 °C (90 % CI 0.9–2.0 °C), and in our main analysis the posterior aerosol effective
radiative forcing is similar to the range provided by the IPCC. We show a
strong sensitivity of the estimated ECSinf to the choice of a priori RF
time series, excluding pre-1950 data and the treatment of OHC data.
Sensitivity analysis performed by merging the upper (0–700 m) and the deep-ocean OHC or using only one OHC dataset (instead of four in the main
analysis) both give an enhancement of the mean ECSinf by about 50 %
from our best estimate
Maternal vitamin D status in pregnancy and molar incisor hypomineralisation and hypomineralised second primary molars in the offspring at 7–9 years of age:a longitudinal study
Purpose: The study aimed to investigate associations between maternal vitamin D status during pregnancy and molar incisor hypomineralisation (MIH) and hypomineralised second primary molars (HSPM) among children. Methods: The study had a longitudinal design using prospectively collected data from 176 mother and child pairs. Mothers were initially recruited in a randomised controlled trial to assess a pregnancy exercise programme. Along with the 7-year follow-up, we invited the children to a dental examination. The exposure variable was maternal serum 25-hydroxyvitamin D in gestational weeks 18–22 and 32–36, categorised as insufficient (< 50 nmol/l) and sufficient (≥ 50 nmol/l). Negative binomial hurdle models were used to analyse potential associations between the exposure variables and MIH or HSPM. The models were adjusted for potential confounders. Results: Among the children (7–9 years old), 32% and 22% had at least one tooth with MIH or HSPM, respectively. A significant association was found between insufficient maternal vitamin D measured in gestational weeks 18–22 and the number of affected teeth among those with MIH at 7–9 years (adjusted RR = 1.82, 95% CI 1.13–2.93). Conclusion: Considering any limitations of the present study, it has been shown that insufficient maternal serum vitamin D at mid-pregnancy was associated with a higher number of affected teeth among the offspring with MIH at 7–9 years of age. Further prospective studies are needed to investigate whether this finding is replicable and to clarify the role of maternal vitamin D status during pregnancy and MIH, as well as HSPM, in children
Recommended from our members
Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season
Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in 5 AeroCom (Aerosol Comparisons between Observations and Models) models (GOCART, HadGEM3, ECHAM5-HAM2, OsloCTM2 and SPRINTARS). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations
A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival.
BACKGROUND: KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival. RESULTS: In silico analysis was performed to identify KLK15 regulatory elements and to classify potentially functional SNPs in these regions. After SNP validation and identification by DNA sequencing of ovarian cancer cell lines and aggressive ovarian cancer patients, 9 SNPs were shortlisted and genotyped using the Sequenom iPLEX Mass Array platform in a cohort of Australian ovarian cancer patients (N = 319). In the Australian dataset we observed significantly worse survival for the KLK15 rs266851 SNP in a dominant model (Hazard Ratio (HR) 1.42, 95% CI 1.02-1.96). This association was observed in the same direction in two independent datasets, with a combined HR for the three studies of 1.16 (1.00-1.34). This SNP lies 15 bp downstream of a novel exon and is predicted to be involved in mRNA splicing. The mutant allele is also predicted to abrogate an HSF-2 binding site. CONCLUSIONS: We provide evidence of association for the SNP rs266851 with ovarian cancer survival. Our results provide the impetus for downstream functional assays and additional independent validation studies to assess the role of KLK15 regulatory SNPs and KLK15 isoforms with alternative intracellular functional roles in ovarian cancer survival.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
The impact of black carbon (BC) aerosols on the
global radiation balance is not well constrained. Here twelve
global aerosol models are used to show that at least 20% of
the present uncertainty in modeled BC direct radiative forcing
(RF) is due to diversity in the simulated vertical profile
of BC mass. Results are from phases 1 and 2 of the global
aerosol model intercomparison project (AeroCom). Additionally,
a significant fraction of the variability is shown to
come from high altitudes, as, globally, more than 40% of the
total BC RF is exerted above 5 km. BC emission regions and
areas with transported BC are found to have differing characteristics.
These insights into the importance of the vertical
profile of BC lead us to suggest that observational studies are
needed to better characterize the global distribution of BC,
including in the upper troposphere
- …