6,175 research outputs found
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games
Biodiversity is essential to the viability of ecological systems. Species
diversity in ecosystems is promoted by cyclic, non-hierarchical interactions
among competing populations. Such non-transitive relations lead to an evolution
with central features represented by the `rock-paper-scissors' game, where rock
crushes scissors, scissors cut paper, and paper wraps rock. In combination with
spatial dispersal of static populations, this type of competition results in
the stable coexistence of all species and the long-term maintenance of
biodiversity. However, population mobility is a central feature of real
ecosystems: animals migrate, bacteria run and tumble. Here, we observe a
critical influence of mobility on species diversity. When mobility exceeds a
certain value, biodiversity is jeopardized and lost. In contrast, below this
critical threshold all subpopulations coexist and an entanglement of travelling
spiral waves forms in the course of temporal evolution. We establish that this
phenomenon is robust, it does not depend on the details of cyclic competition
or spatial environment. These findings have important implications for
maintenance and evolution of ecological systems and are relevant for the
formation and propagation of patterns in excitable media, such as chemical
kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at
http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at
http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI
and
http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV
Top Quark Physics at the Tevatron
We review the field of top-quark physics with an emphasis on experimental
techniques. The role of the top quark in the Standard Model of particle physics
is summarized and the basic phenomenology of top-quark production and decay is
introduced. We discuss how contributions from physics beyond the Standard Model
could affect top-quark properties or event samples. The many measurements made
at the Fermilab Tevatron, which test the Standard Model predictions or probe
for direct evidence of new physics using the top-quark event samples, are
reviewed here.Comment: 50 pages, 17 figures, 2 tables; version accepted by Review of Modern
Physic
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
Defensive alliances in spatial models of cyclical population interactions
As a generalization of the 3-strategy Rock-Scissors-Paper game dynamics in
space, cyclical interaction models of six mutating species are studied on a
square lattice, in which each species is supposed to have two dominant, two
subordinated and a neutral interacting partner. Depending on their interaction
topologies, these systems can be classified into four (isomorphic) groups
exhibiting significantly different behaviors as a function of mutation rate. On
three out of four cases three (or four) species form defensive alliances which
maintain themselves in a self-organizing polydomain structure via cyclic
invasions. Varying the mutation rate this mechanism results in an ordering
phenomenon analogous to that of magnetic Ising model.Comment: 4 pages, 3 figure
Phase transition in a spatial Lotka-Volterra model
Spatial evolution is investigated in a simulated system of nine competing and
mutating bacterium strains, which mimics the biochemical war among bacteria
capable of producing two different bacteriocins (toxins) at most. Random
sequential dynamics on a square lattice is governed by very symmetrical
transition rules for neighborhood invasion of sensitive strains by killers,
killers by resistants, and resistants by by sensitives. The community of the
nine possible toxicity/resistance types undergoes a critical phase transition
as the uniform transmutation rates between the types decreases below a critical
value above which all the nine types of strain coexist with equal
frequencies. Passing the critical mutation rate from above, the system
collapses into one of the three topologically identical states, each consisting
of three strain types. Of the three final states each accrues with equal
probability and all three maintain themselves in a self-organizing polydomain
structure via cyclic invasions. Our Monte Carlo simulations support that this
symmetry breaking transition belongs to the universality class of the
three-state Potts model.Comment: 4 page
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- …
