507 research outputs found
Inflammation in Cardiovascular Tissue Engineering: The Challenge to a Promise: A Minireview
Tissue engineering employs scaffolds, cells, and stimuli brought together in such a way as to mimic the functional architecture of the target tissue or organ. Exhilarating advances in tissue engineering and regenerative medicine allow us to envision in vitro creation or in vivo regeneration of cardiovascular tissues. Such accomplishments have the potential to revolutionize medicine and greatly improve our standard of life. However, enthusiasm has been hampered in recent years because of abnormal reactions at the implant-host interface, including cell proliferation, fibrosis, calcification and degeneration, as compared to the highly desired healing and remodeling. Animal and clinical studies have highlighted uncontrolled chronic inflammation as the main cause of these processes. In this minireview, we present three case studies highlighting the importance of inflammation in tissue engineering heart valves, vascular grafts, and myocardium and propose to focus on the endothelial barrier, the “final frontier” endowed with the natural potential and ability to regulate inflammatory signals
The Metallicity of the Intracluster Medium Over Cosmic Time: Further Evidence for Early Enrichment
We use Chandra X-ray data to measure the metallicity of the intracluster
medium (ICM) in 245 massive galaxy clusters selected from X-ray and
Sunyaev-Zel'dovich (SZ) effect surveys, spanning redshifts .
Metallicities were measured in three different radial ranges, spanning cluster
cores through their outskirts. We explore trends in these measurements as a
function of cluster redshift, temperature, and surface brightness "peakiness"
(a proxy for gas cooling efficiency in cluster centers). The data at large
radii (0.5--1 ) are consistent with a constant metallicity, while at
intermediate radii (0.1-0.5 ) we see a late-time increase in
enrichment, consistent with the expected production and mixing of metals in
cluster cores. In cluster centers, there are strong trends of metallicity with
temperature and peakiness, reflecting enhanced metal production in the
lowest-entropy gas. Within the cool-core/sharply peaked cluster population,
there is a large intrinsic scatter in central metallicity and no overall
evolution, indicating significant astrophysical variations in the efficiency of
enrichment. The central metallicity in clusters with flat surface brightness
profiles is lower, with a smaller intrinsic scatter, but increases towards
lower redshifts. Our results are consistent with other recent measurements of
ICM metallicity as a function of redshift. They reinforce the picture implied
by observations of uniform metal distributions in the outskirts of nearby
clusters, in which most of the enrichment of the ICM takes place before cluster
formation, with significant later enrichment taking place only in cluster
centers, as the stellar populations of the central galaxies evolve.Comment: 13 pages. Accepted version, to appear in MNRA
Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049
The relative importance of the physical processes shaping the thermodynamics
of the hot gas permeating rotating, massive early-type galaxies is expected to
be different from that in non-rotating systems. Here, we report the results of
the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049.
The galaxy harbours a dusty disc of cool gas and is surrounded by an extended
hot X-ray emitting gaseous atmosphere with unusually high central entropy. The
hot gas in the plane of rotation of the cool dusty disc has a multi-temperature
structure, consistent with ongoing cooling. We conclude that the rotational
support of the hot gas is likely capable of altering the multiphase
condensation regardless of the ratio, which is here
relatively high, . However, the measured ratio of cooling time and
eddy turnover time around unity (-ratio ) implies significant
condensation, and at the same time, the constrained ratio of rotational
velocity and the velocity dispersion (turbulent Taylor number)
indicates that the condensing gas should follow non-radial orbits forming a
disc instead of filaments. This is in agreement with hydrodynamical simulations
of massive rotating galaxies predicting a similarly extended multiphase disc.Comment: 11 pages, 12 figures, accepted for publication in MNRA
ALMA observation of the disruption of molecular gas in M87
We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. We report the detection of extended CO (2-1) line emission with a total flux of (5.5 ± 0.6) × 10-18 erg s-1 cm-2 and corresponding molecular gas mass M_{H_2}=(4.7 ± 0.4) × 10^5 M_{⊙}, assuming a Galactic CO to H2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 ± 3 km s-1, in good agreement with measurements based on the [C II] and H α+[N II] lines, and a velocity dispersion of σ = 27 ± 3 km s-1. The CO (2-1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed
Feedback under the microscope II: heating, gas uplift, and mixing in the nearest cluster core
Using a combination of deep 574ks Chandra data, XMM-Newton high-resolution
spectra, and optical Halpha+NII images, we study the nature and spatial
distribution of the multiphase plasma in M87. Our results provide direct
observational evidence of `radio mode' AGN feedback in action, stripping the
central galaxy of its lowest entropy gas and preventing star-formation. This
low entropy gas was entrained with and uplifted by the buoyantly rising
relativistic plasma, forming long "arms". These arms are likely oriented within
15-30 degrees of our line-of-sight. The mass of the uplifted gas in the arms is
comparable to the gas mass in the approximately spherically symmetric 3.8 kpc
core, demonstrating that the AGN has a profound effect on its immediate
surroundings. The coolest X-ray emitting gas in M87 has a temperature of ~0.5
keV and is spatially coincident with Halpha+NII nebulae, forming a multiphase
medium where the cooler gas phases are arranged in magnetized filaments. We
place strong upper limits of 0.06 Msun/yr on the amount of plasma cooling
radiatively from 0.5 keV and show that a uniform, volume-averaged heating
mechanism could not be preventing the cool gas from further cooling. All of the
bright Halpha filaments appear in the downstream region of the <3 Myr old shock
front, at smaller radii than ~0.6'. We suggest that shocks induce shearing
around the filaments, thereby promoting mixing of the cold gas with the ambient
hot ICM via instabilities. By bringing hot thermal particles into contact with
the cool, line-emitting gas, mixing can supply the power and ionizing particles
needed to explain the observed optical spectra. Mixing of the coolest X-ray
emitting plasma with the cold optical line emitting filamentary gas promotes
efficient conduction between the two phases, allowing non-radiative cooling
which could explain the lack of X-ray gas with temperatures under 0.5 keV.Comment: to appear in MNRA
Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids
Incoherent neutron scattering experiments are simulated for simple dynamic
models: a glass (with a smooth distribution of harmonic vibrations) and a
viscous liquid (described by schematic mode-coupling equations). In most
situations multiple scattering has little influence upon spectral
distributions, but it completely distorts the wavenumber-dependent amplitudes.
This explains an anomaly observed in recent experiments
- …