247 research outputs found

    Auxiliary field method and analytical solutions of the Schr\"{o}dinger equation with exponential potentials

    Full text link
    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies and eigenvectors of the Schr\"{o}dinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schr\"{o}dinger equation with exponential potentials of the form −αrλexp⁥(−ÎČr)-\alpha r^\lambda \exp(-\beta r) can also be analytically solved by using the auxiliary field method. Formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn on the Yukawa potential and the pure exponential one

    Effects of an electromagnetic quark form factor on meson properties

    No full text
    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton–antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data. (Elsevier

    Radiative transitions in mesons in a non relativistic quark model

    Get PDF
    In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.Comment: 42 pages, 2 figure

    Hybrid meson masses and the correlated Gaussian basis

    Full text link
    We revisited a model for charmonium hybrid meson with a magnetic gluon [Yu. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D {\bf 77}, 054025 (2008)] and improved the numerical calculations. These improvements support the hybrid meson interpretation of X(4260). Within the same model, we computed the hybrid meson mass with an electric gluon which is resolved to be lighter. Relativistic effects and coupling channels decreased also the mass.Comment: 9 pages, 20 figures ; accepted for publication in Phys. Rev.

    Electromagnetic splitting for mesons and baryons using dressed constituent quarks

    Get PDF
    Electromagnetic splittings for mesons and baryons are calculated in a formalism where the constituent quarks are considered as dressed quasiparticles. The electromagnetic interaction, which contains coulomb, contact, and hyperfine terms, is folded with the quark electrical density. Two different types of strong potentials are considered. Numerical treatment is done very carefully and several approximations are discussed in detail. Our model contains only one free parameter and the agreement with experimental data is reasonable although it seems very difficult to obtain a perfect description in any case.Comment: 14 pages, Revised published versio

    Further developments for the auxiliary field method

    Full text link
    The auxiliary field method is a technique to obtain approximate closed formulae for the solutions of both nonrelativistic and semirelativistic eigenequations in quantum mechanics. For a many-body Hamiltonian describing identical particles, it is shown that the approximate eigenvalues can be written as the sum of the kinetic operator evaluated at a mean momentum p0p_0 and of the potential energy computed at a mean distance r0r_0. The quantities p0p_0 and r0r_0 are linked by a simple relation depending on the quantum numbers of the state considered and are determined by an equation which is linked to the generalized virial theorem. The (anti)variational character of the method is discussed, as well as its connection with the perturbation theory. For a nonrelativistic kinematics, general results are obtained for the structure of critical coupling constants for potentials with a finite number of bound states.Comment: New improved presentatio

    Towers of hybrid mesons

    Full text link
    A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schr\"{o}dinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.Comment: 3 figure

    Full nuclear field theory treatment of two-particle-one-hole-excitations

    No full text
    The nuclear field theory series is summed up to all orders of perturbation theory including only Tamm-Dancoff vertices for the case of two-particle-one-hole-excitations. It is found that the theory gives the same results as those provided by the shell-model method, but only if all possible basis states are included in the formalism. Applicability of the theory is discussed in a simple model

    Tetraquark bound states in a constituent quark model and the nature of the a_0(980) and f_0(980)

    Get PDF
    In this work we study tetraquark bound states in the framework of the constituent quark model of Ref. [2], which has been used for the description of non-strange two- and three-baryon systems and later on applied to the hadron spectra.Comment: Contribution to the MESON 2002 Workshop. Krakow 24-28 May 200
    • 

    corecore