752 research outputs found
Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics
Phase transitions of atmospheric water play a ubiquitous role in the Earth's
climate system, but their direct impact on atmospheric dynamics has escaped
wide attention. Here we examine and advance a theory as to how condensation
influences atmospheric pressure through the mass removal of water from the gas
phase with a simultaneous account of the latent heat release. Building from the
fundamental physical principles we show that condensation is associated with a
decline in air pressure in the lower atmosphere. This decline occurs up to a
certain height, which ranges from 3 to 4 km for surface temperatures from 10 to
30 deg C. We then estimate the horizontal pressure differences associated with
water vapor condensation and find that these are comparable in magnitude with
the pressure differences driving observed circulation patterns. The water vapor
delivered to the atmosphere via evaporation represents a store of potential
energy available to accelerate air and thus drive winds. Our estimates suggest
that the global mean power at which this potential energy is released by
condensation is around one per cent of the global solar power -- this is
similar to the known stationary dissipative power of general atmospheric
circulation. We conclude that condensation and evaporation merit attention as
major, if previously overlooked, factors in driving atmospheric dynamics
Comment on "The Tropospheric Land-Sea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes" by Bayr and Dommenget
T Bayr and D Dommenget [J. Climate 26 (2013) 1387] proposed a model of
temperature-driven air redistribution to quantify the ratio between changes of
sea level pressure and mean tropospheric temperature in the
tropics. This model assumes that the height of the tropical troposphere is
isobaric. Here problems with this model are identified. A revised relationship
between and is derived governed by two parameters -- the isobaric
and isothermal heights -- rather than just one. Further insight is provided by
the model of R S Lindzen and S Nigam [J. Atmos. Sci. 44 (1987) 2418], which was
the first to use the concept of isobaric height to relate tropical to air
temperature, and did this by assuming that isobaric height is always around 3
km and isothermal height is likewise near constant. Observational data,
presented here, show that neither of these heights is spatially universal nor
do their mean values match previous assumptions. Analyses show that the ratio
of the long-term changes in and associated with land-sea
temperature contrasts in a warming climate -- the focus of Bayr and Dommenget
[2013] -- is in fact determined by the corresponding ratio of spatial
differences in the annual mean and . The latter ratio, reflecting
lower pressure at higher temperature in the tropics, is dominated by meridional
pressure and temperature differences rather than by land-sea contrasts.
Considerations of isobaric heights are shown to be unable to predict either
spatial or temporal variation in . As noted by Bayr and Dommenget [2013],
the role of moisture dynamics in generating sea level pressure variation
remains in need of further theoretical investigations.Comment: 26 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1404.101
Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size
The kinetic energy budget of the atmosphere's meridional circulation cells is
analytically assessed. In the upper atmosphere kinetic energy generation grows
with increasing surface temperature difference \$\Delta T_s\$ between the cold
and warm ends of a circulation cell; in the lower atmosphere it declines. A
requirement that kinetic energy generation is positive in the lower atmosphere
limits the poleward cell extension \$L\$ of Hadley cells via a relationship
between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper
limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$.
This pattern is demonstrated here using monthly data from MERRA re-analysis.
Kinetic energy generation along air streamlines in the boundary layer does not
exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero
for the largest observed \$L\$ at 2~km height. The limited meridional cell size
necessitates the appearance of heat pumps -- circulation cells with negative
work output where the low-level air moves towards colder areas. These cells
consume the positive work output of the heat engines -- cells where the
low-level air moves towards the warmer areas -- and can in theory drive the
global efficiency of atmospheric circulation down to zero. Relative
contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation
are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta
p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the
net kinetic power output on Earth is dominated by surface pressure gradients,
with minor net kinetic energy generation in the upper atmosphere. The role of
condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more
discussion and a new figure (Fig. 4) added; in Fig. 3 the previously
invisible dots (observations) can now be see
Dynamics of tree diversity in undisturbed and logged subtropical rainforest in Australia
In subtropical rainforest in eastern Australia, changes in the diversity of trees were compared under natural conditions and eight silvicultural regimes over 35 years. In the treated plots basal area remaining after logging ranged from 12 to 58 m2 per ha. In three control plots richness differed little over this period. In the eight treated plots richness per plot generally declined after intervention and then gradually increased to greater than original diversity. After logging there was a reduction in richness per plot and an increase in species richness per stem in all but the lightest selective treatments. The change in species diversity was related to the intensity of the logging, however the time taken for species richness to return to pre-logging levels was similar in all silvicultural treatments and was not effected by the intensity of treatment. These results suggest that light selective logging in these forests mainly affects dominant species. The return to high diversity after only a short time under all silvicultural regimes suggests that sustainability and the manipulation of species composition for desired management outcomes is possible
The key physical parameters governing frictional dissipation in a precipitating atmosphere
Precipitation generates small-scale turbulent air flows the energy of which
ultimately dissipates to heat. The power of this process has previously been
estimated to be around 2-4 W m-2 in the tropics: a value comparable in
magnitude to the dynamic power of the global circulation. Here we suggest that
this previous power estimate is approximately double the true figure. Our
result reflects a revised evaluation of the mean precipitation path length Hp.
We investigate the dependence of Hp on surface temperature,relative
humidity,temperature lapse rate and degree of condensation in the ascending
air. We find that the degree of condensation,defined as the relative change of
the saturated water vapor mixing ratio in the region of condensation, is a
major factor determining Hp. We estimate from theory that the mean large-scale
rate of frictional dissipation associated with total precipitation in the
tropics lies between 1 and 2 W m-2 and show that our estimate is supported by
empirical evidence. We show that under terrestrial conditions frictional
dissipation constitutes a minor fraction of the dynamic power of
condensation-induced atmospheric circulation,which is estimated to be at least
2.5 times larger. However,because Hp increases with surface temperature Ts, the
rate of frictional dissipation would exceed that of condensation-induced
dynamics, and thus block major circulation, at Ts >~320 K in a moist adiabatic
atmosphere.Comment: 12 pp, 2 figure
The design, construction and monitoring of a complex urban excavation in stiff Oxford Clay
This paper describes the design, contruction and monitoring of a complex urban excavation in stiff Oxford Clay. The project was novel for its complex curved basement excavation in stiff UK soil and the use of the observational method to optimise design and construction. One of the key challenges of the construction works was to prevent damage to adjacent structures, including the historic Savile House building built in 1897, which directly abutted the east wall of the excavation and the Civil War ramparts, which abut Mansfield College. Therefore, lateral wall movements, building settlements, heave and prop loads were closely monitored and constantly accessible to the site team through an innovative geotechnical monitoring dashboard manageable by way of mobile devices. The monitored behaviour of the piled retaining wall system proved to be very stiff and measured movements of both the retaining walls and nearby buildings were all within calculated design thresholds. The observational method enabled the site team to omit temporary steel propping for the double basement, which resulted in significant savings in costs, time and embodied carbon dioxide. The present monitored data provide a valuable frame of reference for future basement construction in Oxford Clay
Investigating the Therapeutic Potential of a Probiotic in a Rat Model for Infection Following Fracture Fixation
Background: Staphylococcus aureus (S. aureus) is the most common pathogen responsible for osteomyelitis.
Objectives: Our objective was to investigate the potential of a probiotic as a treatment for S. aureus-induced infection following fracture fixation in a rat model.
Methods: Fifty male Sprague-Dawley rats were assigned to five groups (Control, S. aureus, S. aureus +ceftriaxone, S. aureus + once weekly probiotic, and S. aureus + twice weekly probiotic). Lactobacillus casei subsp. casei (ATCC: 39392) was selected from eight strains of probiotic bacteria with anti-staphylococcal activity. Infection was induced by inoculation with106 colony-forming units (CFU) of S. aureus in a closed femur fracture model stabilized with an intramedullary pin. Three weeks after the surgery, the development of infection and response to the therapy was documented using radiographs, microbiological and histopathological analysis.
Results: No bacteria were recovered from rats in the Control group. The analysis of variance revealed a significant difference in the CFU/femur (P < 0.001) and CFU/pin (P = 0.001) across all five treatment groups. When the results were compared, the CFU/femur was significantly lower in the S. aureus + Probiotic twice weekly in comparison with S. aureus (P = 0.008) and the S. aureus + ceftriaxone (P = 0.012) groups. Repeated measure ANOVA to test the radiographic scores during the follow-up time between the intervention groups revealed no significant differences (P = 0.179).
Conclusions: Parenteral administration of viable L. casei inhibits S. aureus-induced infection as shown by the bacteriologic analysis, but makes no difference to the radiological union rates. This could be the first step towards developing an effective, biologic adjunctive therapy for the management of osteomyelitis following fracture fixation
Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù
- …
