543 research outputs found
Saddle point states and energy barriers for vortex entrance and exit in superconducting disks and rings
The transitions between the different vortex states of thin mesoscopic
superconducting disks and rings are studied using the non-linear
Ginzburg-Landau functional. They are saddle points of the free energy
representing the energy barrier which has to be overcome for transition between
the different vortex states. In small superconducting disks and rings the
saddle point state between two giant vortex states, and in larger systems the
saddle point state between a multivortex state and a giant vortex state and
between two multivortex states is obtained. The shape and the height of the
nucleation barrier is investigated for different disk and ring configurations.Comment: 10 pages, 18 figure
Induced order and reentrant melting in classical two-dimensional binary clusters
A binary system of classical charged particles interacting through a dipole
repulsive potential and confined in a two-dimensional hardwall trap is studied
by Brownian dynamics simulations. We found that the presence of small particles
\emph{stabilizes} the angular order of the system as a consequence of radial
fluctuations of the small particles. There is an optimum in the increased
rigidity of the cluster as function of the number of small particles. The small
(i.e. defect) particles melt at a lower temperature compared to the big
particles and exhibit a \emph{reentrant} behavior in its radial order that is
induced by the intershell rotation of the big particles.Comment: 7 pages, 3 figure
On the Brauer groups of symmetries of abelian Dijkgraaf-Witten theories
Symmetries of three-dimensional topological field theories are naturally
defined in terms of invertible topological surface defects. Symmetry groups are
thus Brauer-Picard groups. We present a gauge theoretic realization of all
symmetries of abelian Dijkgraaf-Witten theories. The symmetry group for a
Dijkgraaf-Witten theory with gauge group a finite abelian group , and with
vanishing 3-cocycle, is generated by group automorphisms of , by
automorphisms of the trivial Chern-Simons 2-gerbe on the stack of -bundles,
and by partial e-m dualities.
We show that transmission functors naturally extracted from extended
topological field theories with surface defects give a physical realization of
the bijection between invertible bimodule categories of a fusion category and
braided auto-equivalences of its Drinfeld center. The latter provides the
labels for bulk Wilson lines; it follows that a symmetry is completely
characterized by its action on bulk Wilson lines.Comment: 21 pages, 9 figures. v2: Minor changes, typos corrected and
references added. v3: Typos correcte
From non-semisimple Hopf algebras to correlation functions for logarithmic CFT
We use factorizable finite tensor categories, and specifically the
representation categories of factorizable ribbon Hopf algebras H, as a
laboratory for exploring bulk correlation functions in local logarithmic
conformal field theories. For any ribbon Hopf algebra automorphism omega of H
we present a candidate for the space of bulk fields and endow it with a natural
structure of a commutative symmetric Frobenius algebra. We derive an expression
for the corresponding bulk partition functions as bilinear combinations of
irreducible characters; as a crucial ingredient this involves the Cartan matrix
of the category. We also show how for any candidate bulk state space of the
type we consider, correlation functions of bulk fields for closed oriented
world sheets of any genus can be constructed that are invariant under the
natural action of the relevant mapping class group.Comment: 41 pages, several figures. version 2: typos corrected, bibliography
updated, introduction extended, a few minor clarifications adde
Dependence of the vortex configuration on the geometry of mesoscopic flat samples
The influence of the geometry of a thin superconducting sample on the
penetration of the magnetic field lines and the arrangement of vortices are
investigated theoretically. We compare superconducting disks, squares and
triangles with the same surface area having nonzero thickness. The coupled
nonlinear Ginzburg-Landau equations are solved self-consistently and the
important demagnetization effects are taken into account. We calculate and
compare quantities like the free energy, the magnetization, the Cooper-pair
density, the magnetic field distribution and the superconducting current
density for the three geometries. For given vorticity the vortex lattice is
different for the three geometries, i.e. it tries to adapt to the geometry of
the sample. This also influences the stability range of the different vortex
states. For certain magnetic field ranges we found a coexistence of a giant
vortex placed in the center and single vortices toward the corners of the
sample. Also the H-T phase diagram is obtained.Comment: 9 pages, 17 figures (submitted to Phys. Rev. B
Classical double-layer atoms: artificial molecules
The groundstate configuration and the eigenmodes of two parallel
two-dimensional classical atoms are obtained as function of the inter-atomic
distance (d). The classical particles are confined by identical harmonic wells
and repel each other through a Coulomb potential. As function of d we find
several structural transitions which are of first or second order. For first
(second) order transitions the first (second) derivative of the energy with
respect to d is discontinuous, the radial position of the particles changes
discontinuously (continuously) and the frequency of the eigenmodes exhibit a
jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
Structure and Melting of Two-Species Charged Clusters in a Parabolic Trap
We consider a system of charged particles interacting with an unscreened
Coulomb repulsion in a two-dimensional parabolic confining trap. The static
charge on a portion of the particles is twice as large as the charge on the
remaining particles. The particles separate into a shell structure with those
of greater charge situated farther from the center of the trap. As we vary the
ratio of the number of particles of the two species, we find that for certain
configurations, the symmetry of the arrangement of the inner cluster of
singly-charged particles matches the symmetry of the outer ring of
doubly-charged particles. These matching configurations have a higher melting
temperature and a higher thermal threshold for intershell rotation between the
species than the nonmatching configurations.Comment: 4 pages, 6 postscript figure
Suppression of Superconductivity in Mesoscopic Superconductors
We propose a new boundary-driven phase transition associated with vortex
nucleation in mesoscopic superconductors (of size of the order of, or larger
than, the penetration depth). We derive the rescaling equations and we show
that boundary effects associated with vortex nucleation lowers the conventional
transition temperature in mesoscopic superconductors by an amount which is a
function of the size of the superconductor. This result explains recent
experiments in small superconductors where it was found that the transition
temperature depends on the size of the system and is lower than the critical
Berezinsk\u{i}-Kosterlitz-Thouless temperature.Comment: To appear in Phys. Rev. Lett. Vol. 86 (15 Jan. 2001
Vortex structure of thin mesoscopic disks in the presence of an inhomogeneous magnetic field
The vortex states in a thin mesoscopic disk are investigated within the
phenomenological Ginzburg-Landau theory in the presence of different ''model''
magnetic field profiles with zero average field which may result from a
ferromagnetic disk or circulating currents in a loop near the superconductor.
We calculated the dependences of both the ground and metastable states on the
magnitude and shape of the magnetic field profile for different values of the
order parameter angular moment, i.e. the vorticity. The regions of existence of
the multi-vortex state and the giant vortex state are found. We analysed the
phase transitions between these states and studied the contribution from
ring-shaped vortices. A new transition between different multi-vortex
configurations as the ground state is found. Furthermore, we found a vortex
state consisting of a central giant vortex surrounded by a collection of
anti-vortices which are located in a ring around this giant vortex. The limit
to a disk with an infinite radius, i.e. a film, will also be discussed. We also
extended our results to ''real'' magnetic field profiles and to the case in
which an external homogeneous magnetic field is present.Comment: 17 pages, 23 figures. Submitted to PR
- …
