1,708 research outputs found
Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot
We report a thermally activated metastability in a GaAs double quantum dot
exhibiting real-time charge switching in diamond shaped regions of the charge
stability diagram. Accidental charge traps and sensor back action are excluded
as the origin of the switching. We present an extension of the canonical double
dot theory based on an intrinsic, thermal electron exchange process through the
reservoirs, giving excellent agreement with the experiment. The electron spin
is randomized by the exchange process, thus facilitating fast, gate-controlled
spin initialization. At the same time, this process sets an intrinsic upper
limit to the spin relaxation time.Comment: 4 pages, 5 figures (color
Microglial morphology in the somatosensory cortex across lifespan. A quantitative study.
Microglia are long-lived cells that constantly monitor their microenvironment. To accomplish this task, they constantly change their morphology both in the short and long term under physiological conditions. This makes the process of quantifying physiological microglial morphology difficult.
By using a semi-manual and a semi-automatic method to assess fine changes in cortical microglia morphology, we were able to quantify microglia changes in number, surveillance and branch tree starting from the fifth postnatal day to 2 years of life. We were able to identify a fluctuating behavior of most analyzed parameters characterized by a rapid cellular maturation, followed by a long period of relative stable morphology during the adult life with a final convergence to an aged phenotype. Detailed cellular arborization analysis revealed age-induced differences in microglia morphology, with mean branch length and the number of terminal processes changing constantly over time.
Our study provides insight into microglia morphology changes across lifespan under physiological conditions. We were able to highlight, that due to the dynamic nature of microglia several morphological parameters are needed to establish the physiological state of these cells
Clinical outcomes in patients treated for coronary in-stent restenosis with drug-eluting balloons: Impact of high platelet reactivity.
BACKGROUND: The impact of high platelet reactivity (HPR) on clinical outcomes after elective percutaneous coronary interventions (PCI) with drug-eluting balloons (DEB) due to in-stent restenosis (ISR) is unknown. OBJECTIVE: We sought to evaluate the prognostic importance of HPR together with conventional risk factors in patients treated with DEB. METHODS: Patients treated with DEB due to ISR were enrolled in a single-centre, prospective registry between October 2009 and March 2015. Only patients with recent myocardial infarction (MI) received prasugrel, others were treated with clopidogrel. HPR was defined as an ADP-test >46U with the Multiplate assay and no adjustments were done based on results. The primary endpoint of the study was a composite of cardiovascular mortality, MI, any revascularization or stroke during one-year follow-up. RESULTS: 194 stable angina patients were recruited of whom 90% were treated with clopidogrel. Clinical characteristics and procedural data were available for all patients; while platelet function testing was performed in 152 subjects of whom 32 (21%) had HPR. Patients with HPR had a higher risk for the primary endpoint (HR: 2.45; CI: 1.01-5.92; p = 0.03). The difference was primarily driven by a higher risk for revascularization and MI. According to the multivariate analysis, HPR remained a significant, independent predictor of the primary endpoint (HR: 2.88; CI: 1.02-8.14; p = 0.04), while total DEB length and statin treatment were other independent correlates of the primary outcome. CONCLUSION: HPR was found to be an independent predictor of repeat revascularization and MI among elective patients with ISR undergoing PCI with DEB
Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens
Multiple sclerosis (MS) has been considered to specifically affect the central nervous system
(CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying
phenomena in patients, the enteric nervous system has been attracting increasing attention over
the past years. The aim of this study was to identify glial and myelin markers as potential target
structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary
acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but
an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected
immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific
expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in
Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann
cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells
surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells
forming a network in the esophagus. Our results pave the way for further investigations regarding
the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS
Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis
Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPbeta) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPbeta mRNA. The truncated C/EBPbeta LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPbeta LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPbeta knockin mice that constitutively express only the C/EBPbeta LIP isoform from its own locus. Our data show that deregulated C/EBPbeta LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPbeta LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPbeta LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPbeta LIP isoform. KEY MESSAGE: Elevated C/EBPbeta LIP promotes cancer in mice. C/EBPbeta LIP is upregulated in B-NHL. Deregulated C/EBPbeta LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPbeta LIP may support a pro-tumorigenic microenvironment
Electron attachment to valence-excited CO
The possibility of electron attachment to the valence state of CO
is examined using an {\it ab initio} bound-state multireference configuration
interaction approach. The resulting resonance has symmetry;
the higher vibrational levels of this resonance state coincide with, or are
nearly coincident with, levels of the parent state. Collisional
relaxation to the lowest vibrational levels in hot plasma situations might
yield the possibility of a long-lived CO state.Comment: Revtex file + postscript file for one figur
- …