159 research outputs found
Replicating Nanostructures on Silicon by Low Energy Ion Beams
We report on a nanoscale patterning method on Si substrates using
self-assembled metal islands and low-energy ion-beam irradiation. The Si
nanostructures produced on the Si substrate have a one-to-one correspondence
with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the
substrate. The surface morphology and the structure of the irradiated surface
were studied by high-resolution transmission electron microscopy (HRTEM). TEM
images of ion-beam irradiated samples show the formation of sawtooth-like
structures on Si. Removing metal islands and the ion-beam induced amorphous Si
by etching, we obtain a crystalline nanostructure of Si. The smallest
structures emit red light when exposed to a UV light. The size of the
nanostructures on Si is governed by the size of the self-assembled metal
nanoparticles grown on the substrate for this replica nanopatterning. The
method can easily be extended for tuning the size of the Si nanostructures by
the proper choice of the metal nanoparticles and the ion energy in
ion-irradiation. It is suggested that off-normal irradiation can also be used
for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog
Size distribution of sputtered particles from Au nanoislands due to MeV self-ion bombardment
Nanoisland gold films, deposited by vacuum evaporation of gold onto Si(100)
substrates, were irradiated with 1.5 MeV Au ions up to a fluence of
ions cm and at incidence angles up to
with respect to the surface normal. The sputtered particles were collected on
carbon coated grids (catcher grid) during ion irradiation and were analyzed
with transmission electron microscopy and Rutherford backscattering
spectrometry. The average sputtered particle size and the areal coverage are
determined from transmission electron microscopy measurements, whereas the
amount of gold on the substrate is found by Rutherford backscattering
spectrometry. The size distributions of larger particles (number of
atoms/particle, 1,000) show an inverse power-law with an exponent of
-1 in broad agreement with a molecular dynamics simulation of ion impact
on cluster targets.Comment: 13 pages, 8 figures, Submitted for publication in JA
- …