159 research outputs found

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    Size distribution of sputtered particles from Au nanoislands due to MeV self-ion bombardment

    Full text link
    Nanoisland gold films, deposited by vacuum evaporation of gold onto Si(100) substrates, were irradiated with 1.5 MeV Au2+^{2+} ions up to a fluence of 5×10145\times 10^{14} ions cm−2^{-2} and at incidence angles up to 60∘60^{\circ} with respect to the surface normal. The sputtered particles were collected on carbon coated grids (catcher grid) during ion irradiation and were analyzed with transmission electron microscopy and Rutherford backscattering spectrometry. The average sputtered particle size and the areal coverage are determined from transmission electron microscopy measurements, whereas the amount of gold on the substrate is found by Rutherford backscattering spectrometry. The size distributions of larger particles (number of atoms/particle, nn ≥\ge 1,000) show an inverse power-law with an exponent of ∼\sim -1 in broad agreement with a molecular dynamics simulation of ion impact on cluster targets.Comment: 13 pages, 8 figures, Submitted for publication in JA
    • …
    corecore