38,442 research outputs found
Dynamical coupled-channels: the key to understanding resonances
Recent developments on a dynamical coupled-channels model of hadronic and
electromagnetic production of nucleon resonances are summarized.Comment: Invited Plenary talk at the 20th European Conference on Few-Body
Problems in Physics (EFB20), September 10-14 2007, Pisa, Italy. To appear in
the proceedings in Few-Body System
Monoenergetic Neutrino Beam for Long Baseline Experiments
In an electron capture process by a nucleus, emitted neutrinos are
monoenergetic. By making use of it, we study how to get a completely
monoenergetic neutrino beam in a long baseline experiment.Comment: 9 pages, no figure, som typos are corrected, e.g. equation number
quoted in table I is correcte
Anti-D-brane as Dark Matter in Warped String Compactification
It is pointed out that in the warped string compactification, motion of
anti-D-branes near the bottom of a throat behaves like dark matter. Several
scenarios for production of the dark matter are suggested, including one based
on the D/anti-D interaction at the late stage of D/anti-D inflation.Comment: 8 pages, version accepted for publication as a Rapid Communication in
PRD, discussion about mass and production of dark matte
Point interactions in one dimension and holonomic quantum fields
We introduce and study a family of quantum fields, associated to
delta-interactions in one dimension. These fields are analogous to holonomic
quantum fields of M. Sato, T. Miwa and M. Jimbo. Corresponding field operators
belong to an infinite-dimensional representation of the group SL(2,\Rb) in
the Fock space of ordinary harmonic oscillator. We compute form factors of such
fields and their correlation functions, which are related to the determinants
of Schroedinger operators with a finite number of point interactions. It is
also shown that these determinants coincide with tau functions, obtained
through the trivialization of the -bundle over a Grassmannian
associated to a family of Schroedinger operators.Comment: 17 page
Orbital Evolution of Planets around Intermediate-Mass Giants
Around low- and intermediate-mass (1.5-3 M_sun) red giants, no planets have
been found inside 0.6 AU. Such a paucity is not seen in the case of 1 M_sun
main sequence stars. In this study, we examine the possibility that
short-period planets were engulfed by their host star evolving off the main
sequence. To do so, we have simulated the orbital evolution of planets,
including the effects of stellar tide and mass loss, to determine the critical
semimajor axis, a_crit, beyond which planets survive the RGB expansion of their
host star. We have found that a_crit changes drastically around 2 M_sun: In the
lower-mass range, a_crit is more than 1 AU, while a_crit is as small as about
0.2 AU in the higher-mass range. Comparison with measured semimajor axes of
known planets suggests that there is a lack of planets that only planet
engulfment never accounts for in the higher-mass range. Whether the lack is
real affects our understanding of planet formation. Therefore, increasing the
number of planet samples around evolved intermediate-mass stars is quite
meaningful to confirm robustness of the lack of planets.Comment: 4 pages, 3 figures, Part of PlanetsbeyondMS/2010 proceedings
http://arxiv.org/html/1011.660
- …