1,904,592 research outputs found

    Monopoles and Solitons in Fuzzy Physics

    Full text link
    Monopoles and solitons have important topological aspects like quantized fluxes, winding numbers and curved target spaces. Naive discretizations which substitute a lattice of points for the underlying manifolds are incapable of retaining these features in a precise way. We study these problems of discrete physics and matrix models and discuss mathematically coherent discretizations of monopoles and solitons using fuzzy physics and noncommutative geometry. A fuzzy sigma-model action for the two-sphere fulfilling a fuzzy Belavin-Polyakov bound is also put forth.Comment: 17 pages, Latex. Uses amstex, amssymb.Spelling of the name of one Author corrected. To appear in Commun.Math.Phy

    Description of Nuclear Structure Effects in Subbarrier Fusion by the Interacting Boson Model

    Get PDF
    Recent theoretical developments in using the Interacting Boson Model to describe nuclear structure effects in fusion reactions below the Coulomb barrier are reviewed. Methods dealing with linear and all orders coupling between the nuclear excitations and the translational motion are discussed, and the latter is found to lead to a better description of the barrier distribution data. A systematic study of the available data (cross sections, barrier and spin distributions) in rare-earth nuclei is presented.Comment: 9 pages + 2 Figures (in eps form). To be published in the Proceedings of the FUSION97 Conference, South Durras, Australia, March 1997 (J. Phys. G). Full text and figures are also available at http://nucth.physics.wisc.edu/preprints/mad-nt-97-01.abs.htm

    Comment on "Mass and K Lambda coupling of N*(1535)"

    Full text link
    It is argued in [1] that when the strong coupling to the K Lambda channel is considered, Breit-Wigner mass of the lightest orbital excitation of the nucleon N(1535) shifts to a lower value. The new value turned out to be smaller than the mass of the lightest radial excitation N(1440), which effectively solved the long-standing problem of conventional constituent quark models. In this Comment we show that it is not the Breit-Wigner mass of N(1535) that is decreased, but its bare mass. [1] B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006).Comment: 3 pages, comment on "Mass and K Lambda coupling of N*(1535)", B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006
    • …
    corecore