3,579 research outputs found

    Cosmic String Spacetime in Dilaton Gravity and Flat Rotation Curves

    Full text link
    In dilaton gravity theories, we consider a string-like topological defect formed during U(1) gauge symmetry-breaking phase transition in the early Universe, and far from the cosmic string we have vacuum solutions of the generalized Einstein equation. We discuss how they can be related to the flatness of galactic rotation curves.Comment: 9 pages, RevTeX4 fil

    Local Hall effect in hybrid ferromagnetic/semiconductor devices

    Full text link
    We have investigated the magnetoresistance of ferromagnet-semiconductor devices in an InAs two-dimensional electron gas system in which the magnetic field has a sinusoidal profile. The magnetoresistance of our device is large. The longitudinal resistance has an additional contribution which is odd in applied magnetic field. It becomes even negative at low temperature where the transport is ballistic. Based on the numerical analysis, we confirmed that our data can be explained in terms of the local Hall effect due to the profile of negative and positive field regions. This device may be useful for future spintronic applications.Comment: 4 pages with 4 fugures. Accepted for publication in Applied Physics Letter

    Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators

    Full text link
    We investigated the effect of time delays on phase configurations in a set of two-dimensional coupled phase oscillators. Each oscillator is allowed to interact with its neighbors located within a finite radius, which serves as a control parameter in this study. It is found that distance-dependent time-delays induce various patterns including traveling rolls, square-like and rhombus-like patterns, spirals, and targets. We analyzed the stability boundaries of the emerging patterns and briefly pointed out the possible empirical implications of such time-delayed patterns.Comment: 5 Figure

    Diffeomorphic random sampling using optimal information transport

    Full text link
    In this article we explore an algorithm for diffeomorphic random sampling of nonuniform probability distributions on Riemannian manifolds. The algorithm is based on optimal information transport (OIT)---an analogue of optimal mass transport (OMT). Our framework uses the deep geometric connections between the Fisher-Rao metric on the space of probability densities and the right-invariant information metric on the group of diffeomorphisms. The resulting sampling algorithm is a promising alternative to OMT, in particular as our formulation is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when a large number of samples from a low dimensional nonuniform distribution is needed.Comment: 8 pages, 3 figure

    Nearest pattern interaction and global pattern formation

    Full text link
    We studied the effect of nearest pattern interaction on a globally pattern formation in a 2-dimensional space, where patterns are to grow initially from a noise in the presence of periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration

    Hawking Radiation and Energy Conservation in an Evaporating Black Hole

    Full text link
    We define the Bondi energy for two-dimensional dilatonic gravity theories by generalizing the known expression of the ADM energy. We show that our definition of the Bondi energy is exactly the ADM energy minus the radiation energy at null infinity. An explicit calculation is done for the evaporating black hole in the RST model with the Strominger's ghost decoupling term. It is shown that the infalling matter energy is completely recovered through the Hawking radiation and the thunderpop.Comment: 17 pages, LaTex, 3 figures available on request

    Global embeddings of scalar-tensor theories in (2+1)-dimensions

    Get PDF
    We obtain (3+3)- or (3+2)-dimensional global flat embeddings of four uncharged and charged scalar-tensor theories with the parameters B or L in the (2+1)-dimensions, which are the non-trivially modified versions of the Banados-Teitelboim-Zanelli (BTZ) black holes. The limiting cases B=0 or L=0 exactly are reduced to the Global Embedding Minkowski Space (GEMS) solution of the BTZ black holes.Comment: 19 pages, 2 figure

    Scalar wave propagation in topological black hole backgrounds

    Get PDF
    We consider the evolution of a scalar field coupled to curvature in topological black hole spacetimes. We solve numerically the scalar wave equation with different curvature-coupling constant Îľ\xi and show that a rich spectrum of wave propagation is revealed when Îľ\xi is introduced. Relations between quasinormal modes and the size of different topological black holes have also been investigated.Comment: 26 pages, 18 figure
    • …
    corecore