347 research outputs found
Techno-Economic Analysis on the Production of Copper Oxide Nanoparticles by Green Synthesis Method using Abultion indicum Leaf Extract on an Industrial Scale
The purpose of this study was to evaluate the economic feasibility of producing copper oxide (CuO) nanoparticles using the green synthesis method on an industrial scale for 10 years by evaluating from an engineering and economic perspective. Various economic parameters are used to analyze economic viability, including Gross Profit Margin (GPM), Cumulative Net Present Value (CNPV), Payback Period (PBP), as well as economic variations in sales, taxes, raw materials, labor wages, and utilities to ensure project feasibility. Technical analysis to produce 100 kg of CuO nanoparticles per day requires a total production cost of 220,322.850.00 IDR and the gross profit margin is 16,721,250.000,00 IDR per year. PBP analysis shows that the investment will be profitable after more than three years. This project can compete with PBP capital market standards because of the short investment return. The profit is relatively economical, so this project can be run for 10 years under ideal conditions. This research is expected to be a reference for technical and economic analysis of industrial-scale production of CuO nanoparticle
Clinical characteristics of the autumn-winter type scrub typhus cases in south of Shandong province, northern China
<p>Abstract</p> <p>Background</p> <p>Before 1986, scrub typhus was only found endemic in southern China. Because human infections typically occur in the summer, it is called "summer type". During the autumn-winter period of 1986, a new type of scrub typhus was identified in Shandong and northern Jiangsu province of northern China. This newly recognized scrub typhus was subsequently reported in many areas of northern China and was then called "autumn-winter type". However, clinical characteristics of associated cases have not been reported.</p> <p>Methods</p> <p>From 1995 to 2006, all suspected scrub typhus cases in five township hospitals of Feixian county, Shandong province were enrolled. Indirect immunofluorescent assay (IFA) was used as confirmatory serodiagnosis test. Polymerase chain reaction (PCR) connected with restriction fragment length polymorphism (RFLP) and sequence analyses were used for genotyping of <it>O. tsutsugamushi </it>DNAs. Clinical symptoms and demography of confirmed cases were analyzed.</p> <p>Results</p> <p>A total of 480 scrub typhus cases were confirmed. The cases occurred every year exclusively between September and December with a peak occurrence in October. The case numbers were relatively higher in 1995, 1996, 1997, and 2000 than in other years. 57.9% of cases were in the group aged 21â50. More cases occurred in male (56%) than in female (44%). The predominant occupational group of the cases was farmers (85.0%). Farm work was reported the primary exposure to infection in 67.7% of cases. Fever, rash, and eschar were observed in 100.0%, 90.4%, and 88.5% of cases, respectively. Eschars formed frequently on or around umbilicus, abdomen areas, and front and back of waist (34.1%) in both genders. Normal results were observed in 88.7% (WBC counts), 84.5% (PLT counts), and 89.7% (RBC counts) of cases, respectively. Observations from the five hospitals were compared and no significant differences were found.</p> <p>Conclusion</p> <p>The autumn-winter type scrub typhus in northern China occurred exclusively from September to December with a peak occurrence in October, which was different from the summer type in southern China. In comparison with the summer type, complications associated with autumn-winter type scrub typhus were less severe, and abnormalities of routine hematological parameters were less obvious.</p
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)Îș with Îș=2.9-1.8+1.7 for zâČ1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3Mâ. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9Mâ. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60Mâ, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below Ïiâ0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems
Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50-300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space
A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants
partially_open1412sĂŹWe present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20â976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as
âŒ6.3Ă10^â26 for Cas A and âŒ5.6Ă10^â26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.openAbbott, R.; Abbott, T.âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.âX.; Adya, V.âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P.âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S.âB.; Anderson, W.âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S.âV.; Ansoldi, S.; Antelis, J.âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M.âC.; Areeda, J.âS.; ArĂšne, M.; Arnaud, N.; Aronson, S.âM.; Arun, K.âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S.âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M.âK.âM.; Badger, C.; Bae, S.; Baer, A.âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S.âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J.âC.; Barbieri, C.; Barish, B.âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M.âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J.âC.; Baylor, A.âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V.âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T.âF.; Bentley, J.âD.; BenYaala, M.; Bergamin, F.; Berger, B.âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I.âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M.-A.; Blackburn, J.âK.; Blair, C.âD.; Blair, D.âG.; Blair, R.âM.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bonavena, L.âD.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B.âA.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P.âR.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J.âE.; Breschi, M.; Briant, T.; Briggs, J.âH.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A.âF.; Brooks, J.; Brown, D.âD.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Bulik, T.; Bulten, H.âJ.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Buy, C.; Byer, R.âL.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. CalderĂłn; Callaghan, J.âD.; Callister, T.âA.; Calloni, E.; Cameron, J.; Camp, J.âB.; Canepa, M.; Canevarolo, S.; Cannavacciuolo, M.; Cannon, K.âC.; Cao, H.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J.âB.; Carney, M.âF.; Carpinelli, M.; Carrillo, G.; Carullo, G.; Carver, T.âL.; Diaz, J. Casanueva; Casentini, C.; Castaldi, G.; Caudill, S.; CavagliĂ , M.; Cavalier, F.; Cavalieri, R.; Ceasar, M.; Cella, G.; CerdĂĄ-DurĂĄn, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Subrahmanya, S. Chalathadka; Champion, E.; Chan, C.-H.; Chan, C.; Chan, C.âL.; Chan, K.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E.âA.; Chassande-Mottin, E.; Chatterjee, C.; Chatterjee, Debarati; Chatterjee, Deep; Chaturvedi, M.; Chaty, S.; Chen, H.âY.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C.âK.; Cheung, H.âY.; Chia, H.âY.; Chiadini, F.; Chiarini, G.; Chierici, R.; Chincarini, A.; Chiofalo, M.âL.; Chiummo, A.; Cho, G.; Cho, H.âS.; Choudhary, R.âK.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K.âW.; Ciani, G.; Ciecielag, P.; CieĆlar, M.; Cifaldi, M.; Ciobanu, A.âA.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E.âN.; Clark, J.âA.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Codazzo, E.; Cohadon, P.-F.; Cohen, D.âE.; Cohen, L.; Colleoni, M.; Collette, C.âG.; Colombo, A.; Colpi, M.; Compton, C.âM.; Constancio, M.; Conti, L.; Cooper, S.âJ.; Corban, P.; Corbitt, T.âR.; Cordero-CarriĂłn, I.; Corezzi, S.; Corley, K.âR.; Cornish, N.; Corre, D.; Corsi, A.; Cortese, S.; Costa, C.âA.; Cotesta, R.; Coughlin, M.âW.; Coulon, J.-P.; Countryman, S.âT.; Cousins, B.; Couvares, P.; Coward, D.âM.; Cowart, M.âJ.; Coyne, D.âC.; Coyne, R.; Creighton, J.âD.âE.; Creighton, T.âD.; Criswell, A.âW.; Croquette, M.; Crowder, S.âG.; Cudell, J.âR.; Cullen, T.âJ.; Cumming, A.; Cummings, R.; Cunningham, L.; Cuoco, E.; CuryĆo, M.; Dabadie, P.; Canton, T. Dal; DallâOsso, S.; DĂĄlya, G.; Dana, A.; DaneshgaranBajastani, L.âM.; DâAngelo, B.; Danilishin, S.; DâAntonio, S.; Danzmann, K.; Darsow-Fromm, C.; Dasgupta, A.; Datrier, L.âE.âH.; Datta, S.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G.âS.; Davis, D.; Davis, M.âC.; Daw, E.âJ.; Dean, R.; DeBra, D.; Deenadayalan, M.; Degallaix, J.; De Laurentis, M.; DelĂ©glise, S.; Del Favero, V.; De Lillo, F.; De Lillo, N.; Del Pozzo, W.; DeMarchi, L.âM.; De Matteis, F.; DâEmilio, V.; Demos, N.; Dent, T.; Depasse, A.; De Pietri, R.; De Rosa, R.; De Rossi, C.; DeSalvo, R.; De Simone, R.; Dhurandhar, S.; DĂaz, M.âC.; Diaz-Ortiz, M.; Didio, N.âA.; Dietrich, T.; Di Fiore, L.; Di Fronzo, C.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Divakarla, A.âK.; Dmitriev, A.; Doctor, Z.; DâOnofrio, L.; Donovan, F.; Dooley, K.âL.; Doravari, S.; Dorrington, I.; Drago, M.; Driggers, J.âC.; Drori, Y.; Ducoin, J.-G.; Dupej, P.; Durante, O.; DâUrso, D.; Duverne, P.-A.; Dwyer, S.âE.; Eassa, C.; Easter, P.âJ.; Ebersold, M.; Eckhardt, T.; Eddolls, G.; Edelman, B.; Edo, T.âB.; Edy, O.; Effler, A.; Eichholz, J.; Eikenberry, S.âS.; Eisenmann, M.; Eisenstein, R.âA.; Ejlli, A.; Engelby, E.; Errico, L.; Essick, R.âC.; EstellĂ©s, H.; Estevez, D.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T.âM.; Ewing, B.âE.; Fafone, V.; Fair, H.; Fairhurst, S.; Farah, A.âM.; Farinon, S.; Farr, B.; Farr, W.âM.; Farrow, N.âW.; Fauchon-Jones, E.âJ.; Favaro, G.; Favata, M.; Fays, M.; Fazio, M.; Feicht, J.; Fejer, M.âM.; Fenyvesi, E.; Ferguson, D.âL.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, T.âA.; Fidecaro, F.; Figura, P.; Fiori, I.; Fishbach, M.; Fisher, R.âP.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Floden, E.; Fong, H.; Font, J.âA.; Fornal, B.; Forsyth, P.âW.âF.; Franke, A.; Frasca, S.; Frasconi, F.; Frederick, C.; Freed, J.âP.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V.âV.; FronzĂ©, G.âG.; Fulda, P.; Fyffe, M.; Gabbard, H.âA.; Gadre, B.âU.; Gair, J.âR.; Gais, J.; Galaudage, S.; Gamba, R.; Ganapathy, D.; Ganguly, A.; Gaonkar, S.âG.; Garaventa, B.; GarcĂa-NĂșñez, C.; GarcĂa-QuirĂłs, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gayathri, V.; Gemme, G.; Gennai, A.; George, J.; Gerberding, O.; Gergely, L.; Gewecke, P.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, Shaon; Ghosh, Shrobana; Giacomazzo, B.; Giacoppo, L.; Giaime, J.âA.; Giardina, K.âD.; Gibson, D.âR.; Gier, C.; Giesler, M.; Giri, P.; Gissi, F.; Glanzer, J.; Gleckl, A.âE.; Godwin, P.; Goetz, E.; Goetz, R.; Gohlke, N.; Goncharov, B.; GonzĂĄlez, G.; Gopakumar, A.; Gosselin, M.; Gouaty, R.; Gould, D.âW.; Grace, B.; Grado, A.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green, A.âC.; Green, R.; Gretarsson, A.âM.; Gretarsson, E.âM.; Griffith, D.; Griffiths, W.; Griggs, H.âL.; Grignani, G.; Grimaldi, A.; Grimm, S.âJ.; Grote, H.; Grunewald, S.; Gruning, P.; Guerra, D.; Guidi, Gianluca; Guimaraes, A.âR.; GuixĂ©, G.; Gulati, H.âK.; Guo, H.-K.; Guo, Y.; Gupta, Anchal; Gupta, Anuradha; Gupta, P.; Gustafson, E.âK.; Gustafson, R.; Guzman, F.; Haegel, L.; Halim, O.; Hall, E.âD.; Hamilton, E.âZ.; Hammond, G.; Haney, M.; Hanks, J.; Hanna, C.; Hannam, M.âD.; Hannuksela, O.; Hansen, H.; Hansen, T.âJ.; Hanson, J.; Harder, T.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G.âM.; Harry, I.âW.; Hartwig, D.; Haskell, B.; Hasskew, R.âK.; Haster, C.-J.; Haughian, K.; Hayes, F.âJ.; Healy, J.; Heidmann, A.; Heidt, A.; Heintze, M.âC.; Heinze, J.; Heinzel, J.; Heitmann, H.; Hellman, F.; Hello, P.; Helmling-Cornell, A.âF.; Hemming, G.; Hendry, M.; Heng, I.âS.; Hennes, E.; Hennig, J.; Hennig, M.âH.; Hernandez, A.âG.; Vivanco, F. Hernandez; Heurs, M.; Hild, S.; Hill, P.; Hines, A.âS.; Hochheim, S.; Hofman, D.; Hohmann, J.âN.; Holcomb, D.âG.; Holland, N.âA.; Hollows, I.âJ.; Holmes, Z.âJ.; Holt, K.; Holz, D.âE.; Hopkins, P.; Hough, J.; Hourihane, S.; Howell, E.âJ.; Hoy, C.âG.; Hoyland, D.; Hreibi, A.; Hsu, Y.; Huang, Y.; HĂŒbner, M.âT.; Huddart, A.âD.; Hughey, B.; Hui, V.; Husa, S.; Huttner, S.âH.; Huxford, R.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.; Ingram, C.; Isi, M.; Isleif, K.; Iyer, B.âR.; JaberianHamedan, V.; Jacqmin, T.; Jadhav, S.âJ.; Jadhav, S.âP.; James, A.âL.; Jan, A.âZ.; Jani, K.; Janquart, J.; Janssens, K.; Janthalur, N.âN.; Jaranowski, P.; Jariwala, D.; Jaume, R.; Jenkins, A.âC.; Jenner, K.; Jeunon, M.; Jia, W.; Johns, G.âR.; Jones, A.âW.; Jones, D.âI.; Jones, J.âD.; Jones, P.; Jones, R.; Jonker, R.âJ.âG.; Ju, L.; Junker, J.; Juste, V.; Kalaghatgi, C.âV.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J.âB.; Kao, Y.; Kapadia, S.âJ.; Kapasi, D.âP.; Karat, S.; Karathanasis, C.; Karki, S.; Kashyap, R.; Kasprzack, M.; Kastaun, W.; Katsanevas, S.; Katsavounidis, E.; Katzman, W.; Kaur, T.; Kawabe, K.; KĂ©fĂ©lian, F.; Keitel, D.; Key, J.âS.; Khadka, S.; Khalili, F.âY.; Khan, S.; Khazanov, E.âA.; Khetan, N.; Khursheed, M.; Kijbunchoo, N.; Kim, C.; Kim, J.âC.; Kim, K.; Kim, W.âS.; Kim, Y.-M.; Kimball, C.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J.âS.; Kleybolte, L.; Klimenko, S.; Knee, A.âM.; Knowles, T.âD.; Knyazev, E.; Koch, P.; Koekoek, G.; Koley, S.; Kolitsidou, P.; Kolstein, M.; Komori, K.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Kovalam, M.; Kozak, D.âB.; Kringel, V.; Krishnendu, N.âV.; KrĂłlak, A.; Kuehn, G.; Kuei, F.; Kuijer, P.; Kumar, A.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuns, K.; Kuwahara, S.; Lagabbe, P.; Laghi, D.; Lalande, E.; Lam, T.âL.; Lamberts, A.; Landry, M.; Lane, B.âB.; Lang, R.âN.; Lange, J.; Lantz, B.; La Rosa, I.; Lartaux-Vollard, A.; Lasky, P.âD.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lecoeuche, Y.âK.; Lee, H.âM.; Lee, H.âW.; Lee, J.; Lee, K.; Lehmann, J.; LemaĂźtre, A.; Leroy, N.; Letendre, N.; Levesque, C.; Levin, Y.; Leviton, J.âN.; Leyde, K.; Li, A.âK.âY.; Li, B.; Li, J.; Li, T.âG.âF.; Li, X.; Linde, F.; Linker, S.âD.; Linley, J.âN.; Littenberg, T.âB.; Liu, J.; Liu, K.; Liu, X.; Llamas, F.; Llorens-Monteagudo, M.; Lo, R.âK.âL.; Lockwood, A.; London, L.âT.; Longo, A.; Lopez, D.; Portilla, M. Lopez; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lott, T.âP.; Lough, J.âD.; Lousto, C.âO.; Lovelace, G.; Lucaccioni, J.âF.; LĂŒck, H.; Lumaca, D.; Lundgren, A.âP.; Lynam, J.âE.; Macas, R.; MacInnis, M.; Macleod, D.âM.; MacMillan, I.âA.âO.; Macquet, A.; Hernandez, I. Magaña; MagazzĂč, C.; Magee, R.âM.; Maggiore, R.; Magnozzi, M.; Mahesh, S.; Majorana, E.; Makarem, C.; Maksimovic, I.; Maliakal, S.; Malik, A.; Man, N.; Mandic, V.; Mangano, V.; Mango, J.âL.; Mansell, G.âL.; Manske, M.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Mark, Z.; MĂĄrka, S.; MĂĄrka, Z.; Markakis, C.; Markosyan, A.âS.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.; Martelli, F.; Martin, I.âW.; Martin, R.âM.; Martinez, M.; Martinez, V.âA.; Martinez, V.; Martinovic, K.; Martynov, D.âV.; Marx, E.âJ.; Masalehdan, H.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T.âJ.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Mateu-Lucena, M.; Matichard, F.; Matiushechkina, M.; Mavalvala, N.; McCann, J.âJ.; McCarthy, R.; McClelland, D.âE.; McClincy, P.âK.; McCormick, S.; McCuller, L.; McGhee, G.âI.; McGuire, S.âC.; McIsaac, C.; McIver, J.; McRae, T.; McWilliams, S.âT.; Meacher, D.; Mehmet, M.; Mehta, A.âK.; Meijer, Q.; Melatos, A.; Melchor, D.âA.; Mendell, G.; Menendez-Vazquez, A.; Menoni, C.âS.; Mercer, R.âA.; Mereni, L.; Merfeld, K.; Merilh, E.âL.; Merritt, J.âD.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P.âM.; Meylahn, F.; Mhaske, A.; Miani, A.; Miao, H.; Michaloliakos, I.; Michel, C.; Middleton, H.; Milano, L.; Miller, A.; Miller, A.âL.; Miller, B.; Millhouse, M.; Mills, J.âC.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Mir, Ll.âM.; Miravet-TenĂ©s, M.; Mishra, C.; Mishra, T.; Mistry, T.; Mitra, S.; Mitrofanov, V.âP.; Mitselmakher, G.; Mittleman, R.; Mo, Geoffrey; Moguel, E.; Mogushi, K.; Mohapatra, S.âR.âP.; Mohite, S.âR.; Molina, I.; Molina-Ruiz, M.; Mondin, M.; Montani, M.; Moore, C.âJ.; Moraru, D.; Morawski, F.; More, A.; Moreno, C.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry, C.âM.; Mozzon, S.; Muciaccia, F.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, Soma; Mukherjee, Subroto; Mukherjee, Suvodip; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E.âA.; Murray, P.âG.; Musenich, R.; Muusse, S.; Nadji, S.âL.; Nagar, A.; Napolano, V.; Nardecchia, I.; Naticchioni, L.; Nayak, B.; Nayak, R.âK.; Neil, B.âF.; Neilson, J.; Nelemans, G.; Nelson, T.âJ.âN.; Nery, M.; Neubauer, P.; Neunzert, A.; Ng, K.âY.; Ng, S.âW.âS.; Nguyen, C.; Nguyen, P.; Nguyen, T.; Nichols, S.âA.; Nissanke, S.; Nitoglia, E.; Nocera, F.; Norman, M.; North, C.; Nuttall, L.âK.; Oberling, J.; OâBrien, B.âD.; OâDell, J.; Oelker, E.; Oganesyan, G.; Oh, J.âJ.; Oh, S.âH.; Ohme, F.; Ohta, H.; Okada, M.âA.; Olivetto, C.; Oram, R.; OâReilly, B.; Ormiston, R.âG.; Ormsby, N.âD.; Ortega, L.âF.; OâShaughnessy, R.; OâShea, E.; Ossokine, S.; Osthelder, C.; Ottaway, D.âJ.; Overmier, H.; Pace, A.âE.; Pagano, G.; Page, M.âA.; Pagliaroli, G.; Pai, A.; Pai, S.âA.; Palamos, J.âR.; Palashov, O.; Palomba, C.; Pan, H.; Panda, P.âK.; Pang, P.âT.âH.; Pankow, C.; Pannarale, F.; Pant, B.âC.; Panther, F.âH.; Paoletti, F.; Paoli, A.; Paolone, A.; Park, H.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, M.; Pathak, M.; Patricelli, B.; Patron, A.âS.; Paul, S.; Payne, E.; Pedraza, M.; Pegoraro, M.; Pele, A.; Penn, S.; Perego, A.; Pereira, A.; Pereira, T.; Perez, C.âJ.; PĂ©rigois, C.; Perkins, C.âC.; Perreca, A.; PerriĂšs, S.; Petermann, J.; Petterson, D.; Pfeiffer, H.âP.; Pham, K.âA.; Phukon, K.âS.; Piccinni, O.âJ.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierini, L.; Pierro, V.; Pillant, G.; Pillas, M.; Pilo, F.; Pinard, L.; Pinto, I.âM.; Pinto, M.; Piotrzkowski, K.; Pirello, M.; Pitkin, M.âD.; Placidi, E.; Planas, L.; Plastino, W.; Pluchar, C.; Poggiani, R.; Polini, E.; Pong, D.âY.âT.; Ponrathnam, S.; Popolizio, P.; Porter, E.âK.; Poulton, R.; Powell, J.; Pracchia, M.; Pradier, T.; Prajapati, A.âK.; Prasai, K.; Prasanna, R.; Pratten, G.; Principe, M.; Prodi, G.âA.; Prokhorov, L.; Prosposito, P.; Prudenzi, L.; Puecher, A.; Punturo, M.; Puosi, F.; Puppo, P.; PĂŒrrer, M.; Qi, H.; Quetschke, V.; Quitzow-James, R.; Raab, F.âJ.; Raaijmakers, G.; Radkins, H.; Radulesco, N.; Raffai, P.; Rail, S.âX.; Raja, S.; Rajan, C.; Ramirez, K.âE.; Ramirez, T.âD.; Ramos-Buades, A.; Rana, J.; Rapagnani, P.; Rapol, U.âD.; Ray, A.; Raymond, V.; Raza, N.; Razzano, M.; Read, J.; Rees, L.âA.; Regimbau, T.; Rei, L.; Reid, S.; Reid, S.âW.; Reitze, D.âH.; Relton, P.; Renzini, A.; Rettegno, P.; Rezac, M.; Ricci, F.; Richards, D.; Richardson, J.âW.; Richardson, L.; Riemenschneider, G.; Riles, K.; Rinaldi, S.; Rink, K.; Rizzo, M.; Robertson, N.âA.; Robie, R.; Robinet, F.; Rocchi, A.; Rodriguez, S.; Rolland, L.; Rollins, J.âG.; Romanelli, M.; Romano, R.; Romel, C.âL.; Romero-RodrĂguez, A.; Romero-Shaw, I.âM.; Romie, J.âH.; Ronchini, S.; Rosa, L.; Rose, C.âA.; RosiĆska, D.; Ross, M.âP.; Rowan, S.; Rowlinson, S.âJ.; Roy, S.; Roy, Santosh; Roy, Soumen; Rozza, D.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadiq, J.; Sakellariadou, M.; Salafia, O.âS.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sanchez, E.âJ.; Sanchez, J.âH.; Sanchez, L.âE.; Sanchis-Gual, N.; Sanders, J.âR.; Sanuy, A.; Saravanan, T.âR.; Sarin, N.; Sassolas, B.; Satari, H.; Sathyaprakash, B.âS.; Sauter, O.; Savage, R.âL.; Sawant, D.; Sawant, H.âL.; Sayah, S.; Schaetzl, D.; Scheel, M.; Scheuer, J.; Schiworski, M.; Schmidt, P.; Schmidt, S.; Schnabel, R.; Schneewind, M.; Schofield, R.âM.âS.; Schönbeck, A.; Schulte, B.âW.; Schutz, B.âF.; Schwartz, E.; Scott, J.; Scott, S.âM.; Seglar-Arroyo, M.; Sellers, D.; Sengupta, A.âS.; Sentenac, D.; Seo, E.âG.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaffer, T.; Shahriar, M.âS.; Shams, B.; Sharma, A.; Sharma, P.; Shawhan, P.; Shcheblanov, N.âS.; Shikauchi, M.; Shoemaker, D.âH.; Shoemaker, D.âM.; ShyamSundar, S.; Sieniawska, M.; Sigg, D.; Singer, L.âP.; Singh, D.; Singh, N.; Singha, A.; Sintes, A.âM.; Sipala, V.; Skliris, V.; Slagmolen, B.âJ.âJ.; Slaven-Blair, T.âJ.; Smetana, J.; Smith, J.âR.; Smith, R.âJ.âE.; Soldateschi, J.; Somala, S.âN.; Son, E.âJ.; Soni, K.; Soni, S.; Sordini, V.; Sorrentino, F.; Sorrentino, N.; Soulard, R.; Souradeep, T.; Sowell, E.; Spagnuolo, V.; Spencer, A.âP.; Spera, M.; Srinivasan, R.; Srivastava, A.âK.; Srivastava, V.; Staats, K.; Stachie, C.; Steer, D.âA.; Steinlechner, J.; Steinlechner, S.; Stops, D.âJ.; Stover, M.; Strain, K.âA.; Strang, L.âC.; Stratta, G.; Strunk, A.; Sturani, R.; Stuver, A.âL.; Sudhagar, S.; Sudhir, V.; Suh, H.âG.; Summerscales, T.âZ.; Sun, H.; Sun, L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P.âJ.; Swinkels, B.âL.; SzczepaĆczyk, M.âJ.; Szewczyk, P.; Tacca, M.; Tait, S.âC.; Talbot, C.âJ.; Talbot, C.; Tanasijczuk, A.âJ.; Tanner, D.âB.; Tao, D.; Tao, L.; MartĂn, E.âN. Tapia San; Taranto, C.; Tasson, J.âD.; Tenorio, R.; Terhune, J.âE.; Terkowski, L.; Thirugnanasambandam, M.âP.; Thomas, M.; Thomas, P.; Thompson, J.âE.; Thondapu, S.âR.; Thorne, K.âA.; Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toivonen, A.âM.; Toland, K.; Tolley, A.âE.; Tonelli, M.; Torres-FornĂ©, A.; Torrie, C.âI.; e Melo, I. Tosta; TöyrĂ€, D.; Trapananti, A.; Travasso, F.; Traylor, G.; Trevor, M.; Tringali, M.âC.; Tripathee, A.; Troiano, L.; Trovato, A.; Trozzo, L.; Trudeau, R.âJ.; Tsai, D.âS.; Tsai, D.; Tsang, K.âW.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tsutsui, T.; Turbang, K.; Turconi, M.; Ubhi, A.âS.; Udall, R.âP.; Ueno, K.; Unnikrishnan, C.âS.; Urban, A.âL.; Utina, A.; Vahlbruch, H.; Vajente, G.; Vajpeyi, A.; Valdes, G.; Valentini, M.; Valsan, V.; van Bakel, N.; van Beuzekom, M.; van den Brand, J.âF.âJ.; Van Den Broeck, C.; Vander-Hyde, D.âC.; van der Schaaf, L.; van Heijningen, J.âV.; Vanosky, J.; van Remortel, N.; Vardaro, M.; Vargas, A.âF.; Varma, V.; VasĂșth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.âJ.; Venneberg, J.; Venugopalan, G.; Verkindt, D.; Verma, P.; Verma, Y.; Veske, D.; Vetrano, F.; Vicere', Andrea; Vidyant, S.; Viets, A.âD.; Vijaykumar, A.; Villa-Ortega, V.; Vinet, J.-Y.; Virtuoso, A.; Vitale, S.; Vo, T.; Vocca, H.; von Reis, E.âR.âG.; von Wrangel, J.âS.âA.; Vorvick, C.; Vyatchanin, S.âP.; Wade, L.âE.; Wade, M.; Wagner, K.âJ.; Walet, R.âC.; Walker, M.; Wallace, G.âS.; Wallace, L.; Walsh, S.; Wang, J.âZ.; Wang, W.âH.; Ward, R.âL.; Warner, J.; Was, M.; Washington, N.âY.; Watchi, J.; Weaver, B.; Webster, S.âA.; Weinert, M.; Weinstein, A.âJ.; Weiss, R.; Weldon, G.; Weller, C.âM.; Wellmann, F.; Wen, L.; WeĂels, P.; Wette, K.; Whelan, J.âT.; White, D.âD.; Whiting, B.âF.; Whittle, C.; Wilken, D.; Williams, D.; Williams, M.âJ.; Williamson, A.âR.; Willis, J.âL.; Willke, B.; Wilson, D.âJ.; Winkler, W.; Wipf, C.âC.; Wlodarczyk, T.; Woan, G.; Woehler, J.; Wofford, J.âK.; Wong, I.âC.âF.; Wu, D.âS.; Wysocki, D.âM.; Xiao, L.; Yamamoto, H.; Yang, F.âW.; Yang, L.; Yang, Yang; Yang, Z.; Yap, M.âJ.; Yeeles, D.âW.; Yelikar, A.âB.; Ying, M.; Yoo, J.; Yu, Hang; Yu, Haocun; ZadroĆŒny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhao, G.; Zhao, Yue; Zhou, R.; Zhou, Z.; Zhu, X.âJ.; Zimmerman, A.âB.; Zucker, M.âE.; Zweizig, J.Abbott, R.; Abbott, T. âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. âX.; Adya, V. âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P. âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S. âB.; Anderson, W. âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S. âV.; Ansoldi, S.; Antelis, J. âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M. âC.; Areeda, J. âS.; ArĂšne, M.; Arnaud, N.; Aronson, S. âM.; Arun, K. âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S. âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. âK. âM.; Badger, C.; Bae, S.; Baer, A. âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J. âC.; Barbieri, C.; Barish, B. âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. âC.; Baylor, A. âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V. âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T. âF.; Bentley, J. âD.; Benyaala, M.; Bergamin, F.; Berger, B. âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I. âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi,
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into âshortâ âČ1ââs and âlongâ âł1ââs duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgoâs third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2â500 s in duration and a frequency band of 24â2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGOâVirgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTCâ2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
- âŠ