298 research outputs found
Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field
We present magnetotransport results for a 2D electron gas (2DEG) subject to
the quasi-random magnetic field produced by randomly positioned sub-micron Co
dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe
strong local and non-local anisotropic magnetoresistance for external magnetic
fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is
due to the changing topology of the quasi-random magnetic field in which
electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Spin-dependent phenomena and device concepts explored in (Ga,Mn)As
Over the past two decades, the research of (Ga,Mn)As has led to a deeper
understanding of relativistic spin-dependent phenomena in magnetic systems. It
has also led to discoveries of new effects and demonstrations of unprecedented
functionalities of experimental spintronic devices with general applicability
to a wide range of materials. In this article we review the basic material
properties that make (Ga,Mn)As a favorable test-bed system for spintronics
research and discuss contributions of (Ga,Mn)As studies in the general context
of the spin-dependent phenomena and device concepts. Special focus is on the
spin-orbit coupling induced effects and the reviewed topics include the
interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure
High Curie temperatures at low compensation in the ferromagnetic semiconductor (Ga,Mn)As
We investigate the relationship between the Curie temperature TC and the
carrier density p in the ferromagnetic semiconductor (Ga,Mn)As. Carrier
densities are extracted from analysis of the Hall resistance at low
temperatures and high magnetic fields. Results are found to be consistent with
ion channeling measurements when performed on the same samples. We find that
both TC and the electrical conductivity increase monotonically with increasing
p, and take their largest values when p is comparable to the concentration of
substitutional Mn acceptors. This is inconsistent with models in which the
Fermi level is located within a narrow isolated impurity band.Comment: 10 pages, 4 figure
Control of Coercivities in (Ga,Mn)As Thin Films by Small Concentrations of MnAs Nanoclusters
We demonstrate that low concentrations of a secondary magnetic phase in
(Ga,Mn)As thin films can enhance the coercivity by factors up to ~100 without
significantly degrading the Curie temperature or saturation magnetisation.
Magnetic measurements indicate that the secondary phase consists of MnAs
nanoclusters, of average size ~7nm. This approach to controlling the coercivity
while maintaining high Curie temperature, may be important for realizing
ferromagnetic semiconductor based devices.Comment: 8 pages,4 figures. accepted for publication in Appl. Phys. Let
Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As
It has been demonstrated that magnetocrystalline anisotropies in (Ga,Mn)As
are sensitive to lattice strains as small as 10^-4 and that strain can be
controlled by lattice parameter engineering during growth, through post growth
lithography, and electrically by bonding the (Ga,Mn)As sample to a
piezoelectric transducer. In this work we show that analogous effects are
observed in crystalline components of the anisotropic magnetoresistance (AMR).
Lithographically or electrically induced strain variations can produce
crystalline AMR components which are larger than the crystalline AMR and a
significant fraction of the total AMR of the unprocessed (Ga,Mn)As material. In
these experiments we also observe new higher order terms in the
phenomenological AMR expressions and find that strain variation effects can
play important role in the micromagnetic and magnetotransport characteristics
of (Ga,Mn)As lateral nanoconstrictions.Comment: 11 pages, 4 figures, references fixe
Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from edge x-ray magnetic circular dichroism
Using x-ray magnetic circular dichroism (XMCD), we determine the
element-specific character and polarization of unoccupied states near the Fermi
level in (Ga,Mn)As and (In,Ga,Mn)As thin films. The XMCD at the As K absorption
edge consists of a single peak located on the low-energy side of the edge,
which increases with the concentration of ferromagnetic Mn moments. The XMCD at
the Mn K edge is more detailed and is strongly concentration-dependent, which
is interpreted as a signature of hole localization for low Mn doping. The
results indicate a markedly different character of the polarized holes in
low-doped insulating and high-doped metallic films, with a transfer of the hole
orbital magnetic moment from Mn to As sites on crossing the metal-insulator
transition.Comment: 5 figures, to be published in Physical Review
Surface morphology and magnetic anisotropy in (Ga,Mn)As
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements
have revealed the presence of ripples aligned along the direction
on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer
layers, with periodicity of about 50 nm in all samples that have been studied.
These samples show the strong symmetry breaking uniaxial magnetic anisotropy
normally observed in such materials. We observe a clear correlation between the
amplitude of the surface ripples and the strength of the uniaxial magnetic
anisotropy component suggesting that these ripples might be the source of such
anisotropy.Comment: 3 pages, 4 figures, 1 table. Replaced with published versio
- …
