1,457 research outputs found
Comparative study of screened inter-layer interactions in the Coulomb drag effect in bilayer electron systems
Coulomb drag experiments in which the inter-layer resistivity is measured are
important as they provide information on the Coulomb interactions in bilayer
systems. When the layer densities are low correlation effects become
significant to account for the quantitative description of experimental
results. We investigate systematically various models of effective inter-layer
interactions in a bilayer system and compare our results with recent
experiments. In the low density regime, the correlation effects are included
via the intra- and inter-layer local-field corrections. We employ several
theoretical approaches to construct static local-field corrections. Our
comparative study demonstrates the importance of including the correlation
effects accurately in the calculation of drag resistivity. Recent experiments
performed at low layer densities are adequately described by effective
inter-layer interactions incorporating static correlations.Comment: Final Version. To appear in Phys. Rev.
Weighted polynomial approximation on the integers
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46366/1/13_2005_Article_BF01898774.pd
Spin effects in the magneto-drag between double quantum wells
We report on the selectivity to spin in a drag measurement. This selectivity
to spin causes deep minima in the magneto-drag at odd fillingfactors for
matched electron densities at magnetic fields and temperatures at which the
bare spin energy is only one tenth of the temperature. For mismatched densities
the selectivity causes a novel 1/B-periodic oscillation, such that negative
minima in the drag are observed whenever the majority spins at the Fermi
energies of the two-dimensional electron gasses (2DEGs) are anti-parallel, and
positive maxima whenever the majority spins at the Fermi energies are parallel.Comment: 4 pages, 3 figure
The environment effect on operation of in-vessel mirrors for plasma diagnostics in fusion devices
First mirrors will be the plasma facing components of optical diagnostic
systems in ITER. Mirror surfaces will undergo modification caused by erosion
and re-deposition processes [1,2]. As a consequence, the mirror performance may
be changed and may deteriorate [3,4]. In the divertor region it may also be
obscured by deposition [5-7]. The limited access to in-vessel components of
ITER calls for testing the mirror materials in present day devices in order to
gather information on the material damage and degradation of the mirror
performance, i.e. reflectivity. A dedicated experimental programme, First
Mirror Test (FMT), has been initiated at the JET tokamak within the framework
Tritium Retention Studies (TRS).Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France).Submitted by B. Schunke on behalf of V. Voytseny
Semiclassical theory of electron drag in strong magnetic fields
We present a semiclassical theory for electron drag between two parallel
two-dimensional electron systems in a strong magnetic field, which provides a
transparent picture of the most salient qualitative features of anomalous drag
phenomena observed in recent experiments, especially the striking sign reversal
of drag at mismatched densities. The sign of the drag is determined by the
curvature of the effective dispersion relation obeyed by the drift motion of
the electrons in a smooth disorder potential. Localization plays a role in
explaining activated low temperature behavior, but is not crucial for anomalous
drag per se.Comment: 10 page
Self-consistent Coulomb picture of an electron-electron bilayer system
In this work we implement the self-consistent Thomas-Fermi approach and a
local conductivity model to an electron-electron bilayer system. The presence
of an incompressible strip, originating from screening calculations at the top
(or bottom) layer is considered as a source of an external potential
fluctuation to the bottom (or top) layer. This essentially yields modifications
to both screening properties and the magneto-transport quantities. The effect
of the temperature, inter-layer distance and density mismatch on the density
and the potential fluctuations are investigated. It is observed that the
existence of the incompressible strips plays an important role simply due to
their poor screening properties on both screening and the magneto-resistance
(MR) properties. Here we also report and interpret the observed MR Hysteresis
within our model.Comment: 12 pages, 12 figures, submitted to PR
Coulomb Drag Between Parallel Ballistic Quantum Wires
The Coulomb drag between parallel, {\it ballistic} quantum wires is studied
theoretically in the presence of a perpendicular magnetic field B. The
transresistance R_D shows peaks as a function of the Fermi level and splitting
energy between the 1D subbands of the wires. The sharpest peaks appear when the
Fermi level crosses the subband extrema so that the Fermi momenta are small.
Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband
transitions of electrons have maximum probability; the {\it intra}-subband
transitions correspond to a small splitting energy. R_D depends on the field B
in a nonmonotonic fashion: it decreases with B, as a result of the suppression
of backscattering, and increases sharply when the Fermi level approaches the
subband bottoms and the suppression is outbalanced by the increase of the
Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys.
Rev. B,in pres
Negative Electron-electron Drag Between Narrow Quantum Hall Channels
Momentum transfer due to Coulomb interaction between two parallel,
two-dimensional, narrow, and spatially separated layers, when a current
I_{drive} is driven through one layer, is studied in the presence of a
perpendicular magnetic field B. The current induced in the drag layer,
I_{drag}, is evaluated self-consistently with I_{drive} as a parameter.
I_{drag} can be positive or negative depending on the value of the filling
factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied
LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is
positive for a half-filled LL. When the circuit is opened in the drag layer, a
voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and
positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a
negative Coulomb drag, results from energetically favored near-edge inter-LL
transitions that occur when the highest occupied bulk LL and the LL just above
it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures,
Physical Review B, in pres
- …