7,682 research outputs found

    Active noise control on high frequency narrow band dental drill noise: Preliminary results

    Get PDF
    Dental drills produce a characteristic noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise cancellation methods, namely, Passive Noise Control, Adaptive Filtering and Active Noise Control. Dental drill noise occurs at very high frequency ranges in relation to conventional ANC, typically 2kHz to 6kHz and it has a narrow band characteristic due to the direct relation of the noise to the rotational speed of the bearing. This paper presents a design of an experimental rig where first applications of ANC on dental drill noise are executed using the standard filtered reference Least Mean Square (FXLMS) algorithm. The secondary path is kept as simple as possible, due to the high frequency range of interest, and hence is chosen as the space between headphone loudspeaker and error microphone placed in the ear (input of the headphone loudspeaker and the output of the error microphone). A standard headphone loudspeaker is used for the control source and the microphone inside of an “Ear and Cheek Simulator Type 43AG” is used as the error microphone. The secondary path transfer function is obtained and preliminary results of the application of ANC are discussed

    Active noise control for high frequencies

    Get PDF
    There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a noisy environment; in which dental drill noise is commonly off-putting for many patients and is believed to harm the dentist’s hearing over a long period of time. However, dealing with dental drill noise is a different proposition from the applications mentioned above as the frequency range of the peak amplitudes goes from approximately 1.5 kHz to 12 kHz, whereas conventional ANC applications consider a maximum of 1.5 kHz. This paper will review the application of ANC at low frequencies and justify an approach for dealing with dental noise using digital technologies at higher frequencies. The limits of current ANC technologies will be highlighted and the means of improving performance for this dental application will be explored. In particular, technicalities of implementing filtering algorithms on a Digital Signal Processor will be addressed

    Real-time adaptive filtering of dental drill noise using a digital signal processor

    Get PDF
    The application of noise reduction methods requires the integration of acoustics engineering and digital signal processing, which is well served by a mechatronic approach as described in this paper. The Normalised Least Mean Square (NLMS) algorithm is implemented on the Texas Instruments TMS320C6713 DSK Digital Signal Processor (DSP) as an adaptive digital filter for dental drill noise. Blocks within the Matlab/Simulink Signal Processing Blockset and the Embedded Target for TI C6000 DSP family are used. A working model of the algorithm is then transferred to the Code Composer Studio (CCS), where the desired code can be linked and transferred to the target DSP. The experimental rig comprises a noise reference microphone, a microphone for the desired signal, the DSK and loudspeakers. Different load situations of the dental drill are considered as the noise characteristics change when the drill load changes. The result is that annoying drill noise peaks, which occur in a frequency range from 1.5 kHz to 10 kHz, are filtered out adaptively by the DSP. Additionally a schematic design for its implementation in a dentist’s surgery will also be presented

    Dental drill noise reduction using a combination of active noise control, passive noise control and adaptive filtering

    Get PDF
    Dental drills produce a characteristic high frequency, narrow band noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise control methods, namely, Passive Noise Control (PNC), Adaptive Filtering (AF) and Active Noise Control (ANC). This paper discusses the application of the three methods to reduce dental drill noise while allowing two-way communication. Experimental setup for measuring the noise reduction by PNC is explained and results from different headphones and headphone types are presented. The implementation and results of an AF system using the Least Mean Square (LMS) algorithm are shown. ANC requires a modification of the LMS algorithm due to the introduction of the electro-acoustical cancellation path transfer function to compensate for the delays introduced by the control system. Therefore a cancellation path transfer function modeling method based on the filtered reference LMS (FXLMS) algorithm is presented along with preliminary results of the implementation

    Picosecond timing of Microwave Cherenkov Impulses from High-Energy Particle Showers Using Dielectric-loaded Waveguides

    Full text link
    We report on the first measurements of coherent microwave impulses from high-energy particle-induced electromagnetic showers generated via the Askaryan effect in a dielectric-loaded waveguide. Bunches of 12.16 GeV electrons with total bunch energy of 103104\sim 10^3-10^4 GeV were pre-showered in tungsten, and then measured with WR-51 rectangular (12.6 mm by 6.3 mm) waveguide elements loaded with solid alumina (Al2O3Al_2 O_3) bars. In the 5-8 GHz TE10TE_{10} single-mode band determined by the presence of the dielectric in the waveguide, we observed band-limited microwave impulses with amplitude proportional to bunch energy. Signals in different waveguide elements measuring the same shower were used to estimate relative time differences with 2.3 picosecond precision. These measurements establish a basis for using arrays of alumina-loaded waveguide elements, with exceptional radiation hardness, as very high precision timing planes for high-energy physics detectors.Comment: 16 pages, 15 figure

    The Unusual Superconducting State at 49 K in Electron-Doped CaFe2As2 at Ambient

    Full text link
    We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe2As2 via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at ~ 49 K, which has a low critical field ~ 4 Oe, and the other at ~ 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (Tc) only up to 38 K and pressurization has been reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K phase detected will be discussed.Comment: 11 pages, 8 figure

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure
    corecore