892 research outputs found
Correlated local distortions of the TlO layers in TlBaCuO: An x-ray absorption study
We have used the XAFS (x-ray-absorption fine structure) technique to
investigate the local structure about the Cu, Ba, and Tl atoms in orthorhombic
Tl-2201 with a superconducting transition temperature T=60 K. Our results
clearly show that the O(1), O(2), Cu, and Ba atoms are at their ideal sites as
given by the diffraction measurements, while the Tl and O(3) atoms are more
disordered than suggested by the average crystal structure. The Tl-Tl distance
at 3.5 \AA{ } between the TlO layers does not change, but the Tl-Tl distance at
3.9 \AA{ } within the TlO layer is not observed and the Tl-Ba and Ba-Tl peaks
are very broad. The shorter Tl-O(3) distance in the TlO layer is about 2.33
\AA, significantly shorter than the distance calculated with both the Tl and
O(3) atoms at their ideal sites ( 0 or ). A model based
on these results shows that the Tl atom is displaced along the
directions from its ideal site by about 0.11 \AA; the displacements of
neighboring Tl atoms are correlated. The O(3) atom is shifted from the $4e$
site by about 0.53 \AA{ } roughly along the directions. A comparison of
the Tl L-edge XAFS spectra from three samples, with T=60 K, 76 K,
and 89 K, shows that the O environment around the Tl atom is sensitive to T
while the Tl local displacement is insensitive to T and the structural
symmetry. These conclusions are compared with other experimental results and
the implications for charge transfer and superconductivity are discussed. This
paper has been submitted to Phys. Rev. B.Comment: 20 pages plus 14 ps figures, REVTEX 3.
Sparsity and Incoherence in Compressive Sampling
We consider the problem of reconstructing a sparse signal from a
limited number of linear measurements. Given randomly selected samples of
, where is an orthonormal matrix, we show that minimization
recovers exactly when the number of measurements exceeds where is the number of
nonzero components in , and is the largest entry in properly
normalized: . The smaller ,
the fewer samples needed.
The result holds for ``most'' sparse signals supported on a fixed (but
arbitrary) set . Given , if the sign of for each nonzero entry on
and the observed values of are drawn at random, the signal is
recovered with overwhelming probability. Moreover, there is a sense in which
this is nearly optimal since any method succeeding with the same probability
would require just about this many samples
Frenkel and charge transfer excitons in C60
We have studied the low energy electronic excitations of C60 using momentum
dependent electron energy-loss spectroscopy in transmission. The momentum
dependent intensity of the gap excitation allows the first direct experimental
determination of the energy of the 1Hg excitation and thus also of the total
width of the multiplet resulting from the gap transition. In addition, we could
elucidate the nature of the following excitations - as either Frenkel or charge
transfer excitons.Comment: RevTEX, 3 Figures, to appear in Phys. Rev.
Representing addition and subtraction : learning the formal conventions
The study was designed to test the effects of a structured intervention in teaching children to represent addition and subtraction. In a post-test only control group design, 90 five-year-olds experienced the intervention entitled Bi-directional Translation whilst 90 control subjects experienced typical teaching. Post-intervention testing showed some significant differences between the two groups both in terms of being able to effect the addition and subtraction operations and in being able to determine which operation was appropriate. The results suggest that, contrary to historical practices, children's exploration of real world situations should precede practice in arithmetical symbol manipulation
Ethanol reversal of tolerance to the respiratory depressant effects of morphine
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths
Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments
We analyze single-particle electronic and two-particle magnetic properties of
the Hubbard model in the underdoped and optimally-doped regime of \YBCO by
means of a modified version of the fluctuation-exchange approximation, which
only includes particle-hole fluctuations. Comparison of our results with
Quantum-Monte Carlo (QMC) calculations at relatively high temperatures () suggests to introduce a temperature renormalization in order to
improve the agreement between the two methods at intermediate and large values
of the interaction .
We evaluate the temperature dependence of the spin-lattice relaxation time
and of the spin-echo decay time and compare it with the results
of NMR measurements on an underdoped and an optimally doped \YBCO sample. For
it is possible to consistently adjust the parameters of the Hubbard
model in order to have a good {\it semi-quantitative} description of this
temperature dependence for temperatures larger than the spin gap as obtained
from NMR measurements. We also discuss the case , which is more
appropriate to describe magnetic and single-particle properties close to
half-filling. However, for this larger value of the agreement with QMC as
well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
Theory for Dynamical Short Range Order and Fermi Surface Volume in Strongly Correlated Systems
Using the fluctuation exchange approximation of the one band Hubbard model,
we discuss the origin of the changing Fermi surface volume in underdoped
cuprate systems due to the transfer of occupied states from the Fermi surface
to its shadow, resulting from the strong dynamical antiferromagnetic short
range correlations. The momentum and temperature dependence of the quasi
particle scattering rate shows unusual deviations from the conventional Fermi
liquid like behavior. Their consequences for the changing Fermi surface volume
are discussed. Here, we investigate in detail which scattering processes
might be responsible for a violation of the Luttinger theorem. Finally, we
discuss the formation of hole pockets near half filling.Comment: 5 pages, Revtex, 4 postscript figure
Optical properties of an effective one-band Hubbard model for the cuprates
We study the Cu and O spectral density of states and the optical conductivity
of CuO_2 planes using an effective generalized one-band Hubbard model derived
from the extended three-band Hubbard model. We solve exactly a square cluster
of 10 unit cells and average the results over all possible boundary conditions,
what leads to smooth functions of frequency. Upon doping, the Fermi energy
jumps to Zhang-Rice states which are connected to the rest of the valence band
(in contrast to an isolated new band in the middle of the gap). The transfer of
spectral weight depends on the parameters of the original three-band model not
only through the one-band effective parameters but also through the relevant
matrix elements. We discuss the evolution of the gap upon doping. The optical
conductivity of the doped system shows a mid-infrared peak due to intraband
transitions, a pseudogap and a high frequency part related to interband
transitions. Its shape and integrated weight up to a given frequency (including
the Drude weight) agree qualitatively with experiments in the cuprates for low
to moderate doping levels, but significant deviations exist for doping .Comment: 11 pages (tex), 14 figures (ps
- …
