892 research outputs found

    Correlated local distortions of the TlO layers in Tl2_2Ba2_2CuOy_{y}: An x-ray absorption study

    Full text link
    We have used the XAFS (x-ray-absorption fine structure) technique to investigate the local structure about the Cu, Ba, and Tl atoms in orthorhombic Tl-2201 with a superconducting transition temperature Tc_c=60 K. Our results clearly show that the O(1), O(2), Cu, and Ba atoms are at their ideal sites as given by the diffraction measurements, while the Tl and O(3) atoms are more disordered than suggested by the average crystal structure. The Tl-Tl distance at 3.5 \AA{ } between the TlO layers does not change, but the Tl-Tl distance at 3.9 \AA{ } within the TlO layer is not observed and the Tl-Ba and Ba-Tl peaks are very broad. The shorter Tl-O(3) distance in the TlO layer is about 2.33 \AA, significantly shorter than the distance calculated with both the Tl and O(3) atoms at their ideal 4e4e sites ( x=y=x=y=0 or 12\frac{1}{2}). A model based on these results shows that the Tl atom is displaced along the directions from its ideal site by about 0.11 \AA; the displacements of neighboring Tl atoms are correlated. The O(3) atom is shifted from the $4e$ site by about 0.53 \AA{ } roughly along the directions. A comparison of the Tl LIII_{III}-edge XAFS spectra from three samples, with Tc_c=60 K, 76 K, and 89 K, shows that the O environment around the Tl atom is sensitive to Tc_c while the Tl local displacement is insensitive to Tc_c and the structural symmetry. These conclusions are compared with other experimental results and the implications for charge transfer and superconductivity are discussed. This paper has been submitted to Phys. Rev. B.Comment: 20 pages plus 14 ps figures, REVTEX 3.

    Sparsity and Incoherence in Compressive Sampling

    Get PDF
    We consider the problem of reconstructing a sparse signal x0Rnx^0\in\R^n from a limited number of linear measurements. Given mm randomly selected samples of Ux0U x^0, where UU is an orthonormal matrix, we show that 1\ell_1 minimization recovers x0x^0 exactly when the number of measurements exceeds mConstμ2(U)Slogn, m\geq \mathrm{Const}\cdot\mu^2(U)\cdot S\cdot\log n, where SS is the number of nonzero components in x0x^0, and μ\mu is the largest entry in UU properly normalized: μ(U)=nmaxk,jUk,j\mu(U) = \sqrt{n} \cdot \max_{k,j} |U_{k,j}|. The smaller μ\mu, the fewer samples needed. The result holds for ``most'' sparse signals x0x^0 supported on a fixed (but arbitrary) set TT. Given TT, if the sign of x0x^0 for each nonzero entry on TT and the observed values of Ux0Ux^0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples

    Frenkel and charge transfer excitons in C60

    Full text link
    We have studied the low energy electronic excitations of C60 using momentum dependent electron energy-loss spectroscopy in transmission. The momentum dependent intensity of the gap excitation allows the first direct experimental determination of the energy of the 1Hg excitation and thus also of the total width of the multiplet resulting from the gap transition. In addition, we could elucidate the nature of the following excitations - as either Frenkel or charge transfer excitons.Comment: RevTEX, 3 Figures, to appear in Phys. Rev.

    Representing addition and subtraction : learning the formal conventions

    Get PDF
    The study was designed to test the effects of a structured intervention in teaching children to represent addition and subtraction. In a post-test only control group design, 90 five-year-olds experienced the intervention entitled Bi-directional Translation whilst 90 control subjects experienced typical teaching. Post-intervention testing showed some significant differences between the two groups both in terms of being able to effect the addition and subtraction operations and in being able to determine which operation was appropriate. The results suggest that, contrary to historical practices, children's exploration of real world situations should precede practice in arithmetical symbol manipulation

    Ethanol reversal of tolerance to the respiratory depressant effects of morphine

    Get PDF
    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths

    Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments

    Full text link
    We analyze single-particle electronic and two-particle magnetic properties of the Hubbard model in the underdoped and optimally-doped regime of \YBCO by means of a modified version of the fluctuation-exchange approximation, which only includes particle-hole fluctuations. Comparison of our results with Quantum-Monte Carlo (QMC) calculations at relatively high temperatures (T1000KT\sim 1000 K) suggests to introduce a temperature renormalization in order to improve the agreement between the two methods at intermediate and large values of the interaction UU. We evaluate the temperature dependence of the spin-lattice relaxation time T1T_1 and of the spin-echo decay time T2GT_{2G} and compare it with the results of NMR measurements on an underdoped and an optimally doped \YBCO sample. For U/t=4.5U/t=4.5 it is possible to consistently adjust the parameters of the Hubbard model in order to have a good {\it semi-quantitative} description of this temperature dependence for temperatures larger than the spin gap as obtained from NMR measurements. We also discuss the case U/t8U/t\sim 8, which is more appropriate to describe magnetic and single-particle properties close to half-filling. However, for this larger value of U/tU/t the agreement with QMC as well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99

    Theory for Dynamical Short Range Order and Fermi Surface Volume in Strongly Correlated Systems

    Full text link
    Using the fluctuation exchange approximation of the one band Hubbard model, we discuss the origin of the changing Fermi surface volume in underdoped cuprate systems due to the transfer of occupied states from the Fermi surface to its shadow, resulting from the strong dynamical antiferromagnetic short range correlations. The momentum and temperature dependence of the quasi particle scattering rate shows unusual deviations from the conventional Fermi liquid like behavior. Their consequences for the changing Fermi surface volume are discussed. Here, we investigate in detail which scattering processes might be responsible for a violation of the Luttinger theorem. Finally, we discuss the formation of hole pockets near half filling.Comment: 5 pages, Revtex, 4 postscript figure

    Optical properties of an effective one-band Hubbard model for the cuprates

    Full text link
    We study the Cu and O spectral density of states and the optical conductivity of CuO_2 planes using an effective generalized one-band Hubbard model derived from the extended three-band Hubbard model. We solve exactly a square cluster of 10 unit cells and average the results over all possible boundary conditions, what leads to smooth functions of frequency. Upon doping, the Fermi energy jumps to Zhang-Rice states which are connected to the rest of the valence band (in contrast to an isolated new band in the middle of the gap). The transfer of spectral weight depends on the parameters of the original three-band model not only through the one-band effective parameters but also through the relevant matrix elements. We discuss the evolution of the gap upon doping. The optical conductivity of the doped system shows a mid-infrared peak due to intraband transitions, a pseudogap and a high frequency part related to interband transitions. Its shape and integrated weight up to a given frequency (including the Drude weight) agree qualitatively with experiments in the cuprates for low to moderate doping levels, but significant deviations exist for doping x>0.3x>0.3.Comment: 11 pages (tex), 14 figures (ps
    corecore